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Abstract

The intention behind this paper is to achieve exact solution of one dimensional nonlinear fractional
partial differential equation(NFPDE) by using Adomian decomposition method(ADM) with
suitable initial value. These equations arise in gas dynamic model and heat conduction model. The
results show that ADM is powerful, straightforward and relevant to solve NFPDE. To represent
usefulness of present technique, solutions of some differential equations in physical models and
their graphical representation are done by MATLAB software.
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1 Introduction

In current years, fractional calculus has been widely utilized for various applications in large number
of well organized and technological fields such as biosciences, chemical sciences, biochemical and
physical fields. Nonlinear partial differential equation(NPDE) appear in various fields of physics,
engineering and applied mathematics. It has come to light that various facts in engineering, physics
and other sciences can be expressed very gratefully by models using mathematical tool by fractional
calculus [1, 2]. For better comprehension of phenomenon expressed by a given NFPDE, the solution
of differential equations of fractional order must be elaborated. Fractional derivatives provide more
perfect models of actual world problems than integer order derivatives. By virtue of their many
applications in scientific research fields, FPDEs found to be an effective aid to describe certain
physical phenomena, such as diffusion processes, electrical and rheological materials properties and
viscoelasticity theories also in earthquake modeling, traffic flow models, diffusion model, control
and relaxation processes [3, 4, 5, 6, 7).

Many researcher have concentrate to study the analytical or approximate solutions of NFPDEs by
applying various numerical methods. In between these methods, ADM |8, 9, 10, 11, 12] is worldwide
approach which can be used to solve fractional ordinary differential equations as well as FPDEs.
ADM was at first suggested by Adomian [13, 14]. Wazwaz [15, 16] has applied ADM to solve variety
of differential equations. While Shawagfeh [17] has employed Adomian decomposition method for
solving NFPDESs, Daftardar-Gejji and Jafri have obtained solution of numerous problems [18, 19] by
using Adomian decomposition method. Also Dhaigude and Birajdar [20, 21]extended the discrete
ADM for obtaining the numerical solution of system of fractional partial differential equations.
Chitalkar-Dhaigude and Bhadgaonkar in [22] have shown that the ADM is more convenient than
the Charpits method to solve first-order nonlinear PDEs. Bhadgaonkar and Dhaigude [23] obtain
exact analytical solution of nonlinear nonhomogeneous space-time FPDEs in Gas dynamics model,
Advection model, Wave model and Klein-Gordon model by improved Adomian decomposition
method coupled with fractional Taylor expansion series. B.Sontakke and R.Pandit [24, 25, 26]
investigates the iterative solution of linear and NFPDEs using fractional ADM. Peng Guo [27] also
solve fractional partial differential equations by ADM.

There are very few equations which can be solved by applying both space-time fractional order
derivative. The gas dynamics equation and heat conduction equation are the most crucial nonlinear
equation that plays a vital role in physical science and engineering. In this study, the use of ADM
is extended to find analytical approximate solutions for the nonlinear fractional heat conduction
problem and gas dynamics problem. The solutions of our model equations are deliberated in the form
of convergent series with easily computable components. The space and time fractional derivatives
are described in the Caputo sense. Gas dynamics equations [28, 29, 30, 31] are mathematical
expressions based on the physical behaviours of conservation of mass,momentum, energy, etc.
The nonlinear fractional gas dynamics equations are relevant in the shock fronts, rare factions,
and contact disconnectedness. In [32] author solved gas dynamic equation for a time fractional
derivative. The study of gas dynamics is often correlated with the flight of recent high-speed
aircraft and atmospheric reentry of space-exploration vehicles. One-dimensional (1-D) flow refers
to flow of gas through a duct or channel. Consider one dimensional space and time fractional gas
dynamic equation.

Diu(z,t) + Dyu(x,t) — u(z, t)(1 — u(x,t)) =0, 0<a<l (1.1)

with initial condition u(z,0) = f(z). If & = 1 given equation reduces to classical one.
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A heat conduction [33, 34] is a molecular transfer of thermal energy in solids, liquids and gases
from the more energetic particles of a medium to the adjacent less energetic ones. The action of
the heat conduction occur between the particles of the substance when they directly touch each-
other and have unlike temperature. A heat transfer problem is said to be one-dimensional if the
temperature in the medium varies in one direction only and thus heat is transferred in one direction,
and the variation of temperature and thus heat transfer in other directions are negligible or zero.
For example, heat transfer through the glass of a window can be considered to be one-dimensional.
Likewise, heat transfer through a hot water pipe, Heat transfer to an egg dropped into boiling water
can be considered to be one dimensional. Fakour, M. et al. [35, 36, 37, 38, 39] and Rahbari, A.
et al.[40] are study more about heat conduction phenomenon. A heat conduction one dimensional
space-time fractional order equation can be formulated by specifying the applicable differential
equation and a set of proper initial condition.

m,oz

a _ 2a
Diu(z,t) = D;%u(z,t) + ot D

uDSu(z,t) —u’(x,t) + u(z,t), 0<a<l1 (1.2)
with initial condition u(z,0) = f(z). If & = 1 given equation reduces to classical one.

The paper is designed in such way: in section (2) few basic results about fractional calculus and
related properties are given which are used in this paper, while in section (3) we clarify the steps
of the ADM for solving nonlinear space and time FPDEs. The effectiveness and sharpness of the
method is shown by obtaining solution of equations in physical models like gas dynamic model and
heat conduction model in section (4). Section (5) is results and discussion. Section (6) is conclusion.

2 Preliminaries

In this section, we set up notations, basic definitions and main properties of Riemann-Liouville
fractional integral operator(RLFIO), and Caputo fractional differential operator(CFDO) is also
given. In this section, basic definitions on fractional calculus are discussed which are useful for
further discussion.

Definition 2.1. [41] Let f € Co and « > —1, then RLFIO of u(z,t) with respect to t of order «
is indicated by Ifu(x,t) and is explained as

t
Jiu(z, t) = L ] / (t — ) Dz, 7)dr, t>0,a>0. (2.1)
0

)

Definition 2.2. [41] Let m — 1 < o« < m, t € R and t > 0. The CFDO for the function
f € H'([a,b],R4) with order a > 0 is explained as

1 ¢ m,a,lamu
R J, -7

Diu(z,t) = (2.2)
G’”J a=m¢&c N
otm’ B '
We have following properties of RLFIO and CFDO
« F(,LL + 1) (p—a)
Dot = T yluma) 2.3
K I'(p—a+1) (2:3)
Plp+1) ura
Jot = WD) yete) S0 > 1. 2.4
i MNp+a+1) @ H (2.4)
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Note that the relation between RLFIO and CFDO is given by:

-1
JEDiu(z, t) = u(z,0) — u™ (z,0)
0

3

tk

Ak m—-—1<a<m. (2.5)

=~
I

Definition 2.3. The Mittage-Leffler function[42] for one parameter and two parameter is defined
as follows

oo

tn

Ea(t) = Z:Om»

(a € C, Re(a) > 0),

Eap(t) = ;m7 (o, B € C, Re(a, B) > 0).

When we apply CFDO on MLF we get
D E.(at™) = aEqo(at®), (2.6)

where a is constant.

3 Analysis of Adomian Decomposition Method

In this section, we present the ADM to solve one-dimensional nonlinear space-time FPDEs. Consider
the IVP for nonlinear space and time FPDE of order 0 < a <'1

Liu(z,t) + R(u(z,t)) + N(u(z,t)) = g(z,t), (3.1)
with initial condition
u(z,0) = h(x) (3.2)

where L{(u) is the fractional differential operator of highest order fractional derivative with respect
to t, u(zx,t) is unrecognized function which we want to determined, ¢ is time variable, x is the space
coordinate, R(u) is linear differential operator, N(u) = f(u(z,t)) is nonlinear data and g(z,t) is
nonhomogeneous function.

Now, applying the RLFIO J* on both side of equation(3.1) and use the IC (3.2), we attain:
u(z,t) = u(z,0) + J7' [g(z,t) — R(u) — N(u)]. (3.3)

The unrecognized function u(z,t) can be expressed as an infinite series of the form

[eo]

u(@,t) = un(z,t) (3.4)

n=0

The Adomian polynomials A, for the nonlinear term N (u) can be evaluated by using the following
expression

N(U(.’L’,t)):ZAn(u07U17u3’... 7“471), (35)
n=0
where
10" "\
n = nl a)\n [N )\ ui] A=0’ n= 07 1> 27 37 LN (36)
=0
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where A,, are the nonlinear Adomian polynomials. By substituting decomposed series (3.4), (3.5)
in (3.3) we attain

Z U(J,‘, t) = h’(x) + Jz? |:g($> t) - R Z u”(a:7 t) - Z An(x7 t):| ) (37)
n=0 n=0 n=0
Taking term by term comparison on both side of equation (3.7), we set recursion scheme like:

uo(z,t) = h(z) + Jig(x, ),

ui(z,t) = Ji| — R(uo) — Ao|,
ua(z,t) = Ji' | — R(u1) — A1,

us(z,t) = Ji' | — R(u2) — Az,

U(k+1)($,t) = Jta — R(uk) — Ak 7]{? 2 0,

and so forth. Wherever every component can be determined by manipulating the preceding
components and we can attain the solution in a series form by computing the components un (x, t),n >
0. Eventually, we approximate the solution u(z,t) by the reduced series. Then the solution u(z,t)
of IVP (3.1) — (3.2) is

bmit = tn(,t) (3.8)
n=0
which gives
lim ¢mt1 = u(z, t). (3.9)
m—r 00

4 Numerical Application

The benefits and intensity of the ADM can be expressed by applying it to some physical models in
space and time FPDEs.

Example 4.1. Consider space-time fractional order gas dynamic equation
Diu(z,t) = uDgu — u(l —u), 0<a<l1 (4.1)
subject to initial condition
u(z,0) = Eo(—z%) (4.2)
Solution:- Applying J& on both side of (4.1) we have
JoDiu(z, t) = J7 {— uDyu +u — uQ}
u(z,t) = u(z,0) + J;* { —uDju+u— uz} (4.3)

Suppose that the solution u(x,t) has the following series form

w(z,t) =Y un(z,t) (4.4)
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Then equation (4.3) has the form

oo

Zun(a:,t) = Eo(—2%) + J¢ {Z An + Zun - ZBn]
n=0 n=0 n n=0

=0

(4.5)

where Ay and B, are the Adomian polynomials to be determined from the nonlinear term uDgwu and
u? . Comparing both side of equation (4.5) we have

uo(z,t) = Ea(—z%)

ui(z,t) = Ji | — Ao+ uo —Bo]

=J;'| —uoDguo + uo — (uo)z}

wn(2,t) = Ea(—ma)mfiil)

ug(z,t) = Ji' | — A1+ w1 — Bl]

= Jta — (ulDiuo + UOD;‘Ul) —+up — QUQU1:|

o t2a
) Gat D

Ug(l’,t) = Jta —A2+u2—BQ:|

= Jta — (uzDguo + u1D§u1 + ’(Lng’LLQ) + ug — ((U1)2 =+ QUQUQ)

us(e.0) = ol =o") 5y

and so on.Then solution of IVP is

u(z,t) = Zun(az,y,t) =uo+ur +us+...
n=0

to N t2a N t3a N
MNa+1) T'(a+1) TI'Ba+1)

= Bo-a) |1+

N
= Bo(—z )n};o Fa D)
u(z,t) = Eg(—x®)Eo(t%) (4.6)
It is exact solution of IVP (4.1)-(4.2). If « = 1 solution (4.6) reduces to
u(z,t) =e 1 (4.7)
which is an exact solution to the standard form gas dynamic equation.

Example 4.2. Consider space-time fractional order heat conduction equation

xa

« _ 2a
Diu(z,t) = D% u(z,t) + Tt

uDSu(z, t) — u’(z,t) + u(z, t), 0<a<l (4.8)
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subject to initial condition

:I:Ot

w0 = 5o

(4.9)

Solution:- Applying Ji* on both side of (4.8) we have
xoé

aDa I D2a
Jt tu(w7t) Jt |: x U(l‘,t)+ F(a+1)

uDSu(z,t) — u’(z,t) + u(z, t)]

:L,a

u(z,t) = u(z,0) + J© {Diau(m, t)+ TatD

uD%u(z,t) — u’(z,t) + u(z, t)] (4.10)

Suppose that the solution u(x,t) has the following series form
u(z,t) = Zun(m,t) (4.11)
n=0

Then equation (4.10) has the form

(4.12)

where A, and B, are the Adomian polynomials to be determined from the nonlinear term uDgu
and u? . Comparing both side of equation (4.12) we have

xa

W@ = 53

ui(a,t) = Jg [fo”uo + r(amiinAo — Bo+ uo}
= Jg [0 - F(;iil)uoD;‘uo — (uo0)? + uO]

w(,t) = F(Oéx:- 1) r(ati 1)

us(z,t) = Jg [Diam + F(;ij—l)Al — B+ u1:|

o

= Jta [O — F(O:cci—kl)(uOD;‘%“ + ulD;‘uo) — (2U()U1) -+ ’(L1:|
" (x t) _ xa t2a
YT e+ 1) T(2a+1)
us(z,t) = J;' |:D§QUQ + ﬁfb — B2+ uz}
=J [O — ﬁ(ung‘ug + w1 Dgur +u2Dguo) — (2uouz + u%) + ug}
xa t3o¢

W@ = T TBa 1)
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and so on.Then solution of IVP is

o o]
u(z,t) = Zun(x,y,t) =uot+ur+uz+...

n=0
B % N to N tQa N t3a
C I(a+1) MNa+1) TRa+1) TBa+1)

Prad > e
T(a+ 1) ; T(na+ 1)

Q:Ot

IMNa+1)
It is exact solution of IVP (4.8)-(4.9). If o =1 solution (4.13) reduces to

u(z,t) = E.(t™) (4.13)

u(z, t) = ze' (4.14)

which is an exact solution to the standard form heat conduction equation.

5 Results and Discussion

Fig. 1 is the graphical behaviour of ADM solution (4.6) for different values of a such as a =
1,0.8,0.6,0.4 and exact solution (4.7) when z = y = 0.25. Figs. 2(a), (b) and 3(c), (d) shows the
surface of the 4 terms of the improved ADM solution (4.6) for values of a = 1,0.8,0.6 and surface
of exact solution (4.7). It is clear from Fig. 1 and Figs. 2 to 3, in the limit while o — 1, (4.6)
approaches to the exact solution (4.7). Fig. 4 is the graphical behaviour of ADM solution (4.13)
for different values of o such as a = 1,0.8,0.6,0.4 and exact solution (4.14) when =z = 0.25. Fig.
5(a), (b) and 6(c), (d) shows the surface of the 4 terms of the improved ADM solution (4.13) for
values of a = 1,0.8,0.6 and surface of exact solution (4.14). It is clear from Fig. 4 and Figs. 5
to 6, in the limit while & — 1, (4.13) approaches to the exact solution (4.14). We can see that
the shape of curve of approximate solution for @ = 1 coincides with shape of the exact solution.
Therefore, the improved ADM is an effective and sharp method which can be handled to detect
exact analytical solution of fractional-order gas dynamics equation and heat conduction equation.

a=1
—o=08
—o=06
10k a=0.4
+  Exact

ufx )

a 05 1 15 2
titima)

Fig. 1. 2D Graphical representation of solution (4.6) of IVP (4.1)-(4.2) for different
values of o such as a =1,0.8,0.6,0.4 and exact when = = 0.25.
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(a) a=1 (b) «=0.8
8 10
6 3 §
6 :
T4 Z :
1 5 4 !
2 2
0 0] :
2 : 2 ;
: S i
% N
e kN
1 \\ — 2 1 e 2
) o _ Ny
t(time) 0 g x(space) t(time) 00 x(space)

Fig. 2. 3D Graphical representation of solution (4.6) of IVP (4.1)-(4.2) when a =1,0.8
with respect to time

(c) a=0.6 (d) Exact

i)

\\,, i ST
1(time) 0 o x(space) t(time) 0 ¢

x(space)

Fig. 3. 3D Graphical representation of solution (4.6) of IVP (4.1)-(4.2) when a = 0.6
and exact solution (4.7) with respect to time

12 T T T
10F =1 B
u=0.8
=06
N ——— =04 g
# Exact
Ze ]
3

titime}

Fig. 4. 2D Graphical representation of solution (4.13) of IVP (4.8)-(4.9) for different
values of « such as o« = 1,0.8,0.6,0.4 and exact when =z = 0.25.
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u"

ftime) 0 0 x(space) t{time) 0 x(space)

Fig. 5. 3D Graphical representation of solution (4.13) of IVP (4.8)-(4.9) when « =1,0.8
with respect to time

(c) o=0.6

u(x,t)

t(time) 00 x(space) t(time) 00 x(space)

Fig. 6. 3D Graphical representation of solution (4.13) of IVP (4.8)-(4.9) when a = 0.6
and exact solution (4.14) with respect to time

6 Conclusions

Equations arises in the nonlinear space and time fractional gas dynamic model and heat conduction
model are studied successfully by virtue of ADM. The Caputo definition of fractional derivative is
used to express fractional-order derivative. The solution of these models are in series form may
have rapid convergence to a closed-form solution. One dimensional graphical demonstrations make
sure the high accuracy of the generated results using ADM. It is a more appropriate way to solve
such types physical models with the help of ADM.
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