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Multi-terminal high voltage DC (MTDC) network is an effective technology to

integrate large-scale offshore wind energy sources into conventional AC grids

and improve the stability and flexibility of the power system. In this paper, firstly,

an analytical model of a general applicable MTDC system integrated with

several isolated AC grids is established. Then, an improved AC-DC power

flow algorithm is used to eliminate the additional DC slack bus or droop bus

iteration (SBI/DBI) step of the conventional AC-DC sequential power flow. A

multi-objective optimal power flow (MOPF) algorithm is proposed to minimize

two optimization targets, i.e., overall active power loss and generation costs of

the system. To increase the degree of freedom, adaptive droop control is used

in the proposed optimization algorithm in which the voltage references and

droop coefficients of the modular multilevel converters (MMCs) are control

variables. A multiple objective particle swarm optimization (MOPSO) method is

applied to solve the MOPF problem and achieve the Pareto front. A technique

for order of preference by similarity to ideal solution (TOPSIS) is incorporated in

the decision analysis section and helps the decision maker to identify the best

compromise solution.
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Introduction

In recent years, there has been a steady transition of energy from traditional fossil fuel

sources toward renewable energy, typified by the use of wind power. In contrast to fossil

energy sources such as coal and oil, wind energy is clean, low-carbon, and sustainable,

making it an effective way to resolve the conflict between energy depletion and

socioeconomic growth (Chen et al., 2020; Hu et al., 2022a; Hu et al., 2022b). Offshore

wind energy is growing in popularity as a source of renewable energy compared to

onshore wind energy because of the vast sea area, high and consistent wind speed, high

utilization rate, and minimum environmental impact (Beiter et al., 2017; Xiao et al., 2021).
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Although themajority of the offshore wind farms currently in use

are situated within 100 km of the coast and have relatively small

capacities, there are some located farther offshore and are larger

in scope. Based on the grid connection requirements, the

transmission mode of offshore wind farms can be divided into

two categories: high-voltage alternating current (HVAC) and

high-voltage direct current (HVDC) transmission (Meah and

Ula, 2007; Kalair et al., 2016; Yang et al., 2022).

However, while optimizing the energy structure, various

issues have been brought about as a result of the widespread

use of wind energy (Ma et al., 2017; Dong and Li, 2021). Large-

capacity wind farms are typically located far away from load

centers, which makes local consumption more challenging. The

operation of wind turbines connected to the grid directly through

AC lines is unstable, subject to system voltage fluctuations, and

may even trigger the false operation of relay protection devices in

wind farms. The voltage stability of the system may also be

influenced by voltage fluctuation and flicker brought on by wind

power volatility (Wei et al., 2011). Meanwhile, the charging

problem of AC cable limits the transmission capacity of active

power and increases the construction cost of reactive power

compensation equipment (Meah and Ula, 2007; Kalair et al.,

2016).

A Voltage Source Converter based high-voltage direct

current transmission technology (VSC-HVDC) has been

presented as a solution to these issues. The usage of VSC

HVDC has many benefits over HVAC and line commutated

converter-based HVDC (LCC-HVDC) (Muniappan, 2021;

Damala et al., 2022). For instance, it may be used to connect

to asynchronous grids, requires no reactive power compensation,

and does not have phase change failures (Li et al., 2014). Another

advantage of the VSC converter over the traditional LCC

converter is that it can independently control the active and

reactive power injection of the AC system and is comparatively

simple to expand traditional point-to-point HVDC to high

voltage multi-terminal (MTDC) setups. Additionally, due to

the exceptional qualities in terms of performance, scalability,

and controllability, modular multilevel converters (MMCs), has

been replacing the traditional two- or three-level converter

technologies for HVDC applications (Saad et al., 2013;

Debnath et al., 2014; Saad et al., 2016).

MTDC is a potential technology to integrate large-scale

offshore wind energy sources into conventional AC grids. The

MMC-MTDC technology is cost-effective and can be used to

improve the stability and flexibility of the system. It has become

an important method for connecting offshore wind power plants

to the grid and has obvious advantages for long-distance and

large-scale offshore wind power systems (Liang et al., 2011;

Chaudhuri et al., 2012). The usage of an MTDC grid,

however, also presents new challenges for converter control

strategies (Yao et al., 2008). Only one bus is used as the DC

slack bus in the conventional master-slave control of the

converter stations to manage the DC grid voltage, which is

susceptible to DC-grid failures. Droop control can

significantly improve the stability of the DC grid since

numerous converters operating in droop control mode can

serve as distributed DC slack buses (Nasirian et al., 2014;

Chen et al., 2017).

Also, several studies have been done on the optimal power

flow (OPF) of the MTDC system in recent years, as strategies for

achieving optimal control and scheduling of the power systems

have drawn increasing amounts of attention (Rouzbehi et al.,

2014; Khazaei et al., 2015). To achieve optimal power flow,

usually, the topology selection, parameter configuration, and

capacity of the VSC-MTDC system are optimized and

analyzed to minimize the construction or operation cost.

Baradar et al. (2013) proposed an algorithm for solving the

optimal power flow of AC-DC systems based on second-order

cone programming. Cao et al. (2013) aimed to minimize the

transmission loss of the whole AC/DC network with different

VSC control strategies and grid code compliance of wind farms

considered. Song et al. (2020) proposed a cost-based adaptive

droop control strategy for use in a VSC-based MTDC system to

minimize the total generation cost of the AC system. However,

these studies only consider one objective. Since they did not

consider the trade-offs of different objectives, the optimal

solutions obtained from these single-objective optimizations

frequently result in unsatisfactory solutions for some other

objectives.

Based on this problem, the concept of multi-objective OPF

(MOPF) is proposed. Ghasemi et al. (2014) solved the non-

convex, non-smooth, and high-dimension optimization MOPF

problem using a multi-objective modified imperialist competitive

algorithm (MOMICA) but is only limited to the AC grid.

Rodrigues et al. (2012) considered both transmission loss and

social welfare as optimization objectives for a hybrid AC-DC

system. A genetic-based algorithm was used to solve the MOPF

problem and the decision analysis was incorporated. However,

the converter loss, which accounts for a significant fraction of the

overall MTDC system loss, was excluded. Kim (2017) took both

converter loss and post-contingency corrective actions into

account and the non-dominated sorting genetic algorithm was

used to identify MOPF solutions, but droop control mode was

not considered. Li et al. (2018) proposed an approach that is

applicable to droop control but the MTDC model used is limited

to a point-to-point or three-terminal system which is not general

enough. Also, the sequential power flow methods (Beerten et al.,

2012; Beerten and Belmans, 2015) used in this study involve an

additional DC slack bus or droop bus iteration (SBI/DBI) step,

which increases the computational burden.

In this paper, a multi-objective optimization algorithm is

proposed to minimize the total active power loss and

generation cost of an MTDC system connected to AC

grids. Further on, an improved power flow algorithm is

then applied. The main contributions of this paper are

summarized as follows:
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1) For the optimization of a general MTDC grid linked to several

isolated AC grids, different objectives are considered. The

multiple objective particle swarm optimization (MOPSO)

method is used to solve the MOPF problem and achieve a

Pareto front, and various compromise solutions are selected

using TOPSIS.

2) Different control modes for the MMCs are taken into

consideration while using a general MTDC model. The

only control variables used in the control strategy are the

active voltage references and the droop coefficients of the

MMCs under adaptive droop control mode.

3) An improved power flow algorithm is used to eliminate the

SBI/DBI step and make the calculation of the power flow

more efficient. By calculating the active power injection at the

AC-grid point of common coupling (PCC) using the DC

power flow data, the AC power flow iteration is eliminated

from the overall iteration loop.

Steady state model of MMC-MTDC
system

In this section, the characteristics and control strategy of the

MMC stations that connect the AC and DC grids are discussed.

Then, an analytical model of a general applicable MTDC system

integrated with several isolated AC grids is established. The

MOPF problem of this model is formulated and the equality

and inequality constraints of the system are presented.

MTDC network modeling

MMC is able to control the active and reactive power

injection Ps and Qs independently with respect to the AC

system. For the active power injection, three control targets

are considered:

1) Constant P: The active power injected from the AC grid to

PCC Ps is kept constant.

2) Constant Udc: The converter adapts DC active power

injection Pdc to maintain a constant Udc.

3) Droop control: The active power injected from the DC grid

depends on the droop coefficient k and the deviation of actual

voltage Udc and voltage reference Udc
*.

The direction of power is considered to be positive when it is

flowing to the AC grid. The active power injected from the DC

grid Pdc,i can be expressed as

Pdc,i � Pp
dc,i − ki(Udc,i − Up

dc,i) (1)

The droop coefficient ki is defined by the absolute value of the

reciprocal of slope, and for DC nodes under droop control mode

ki is positive. The relationship of active power and voltage for DC

nodes under constant P and constant Udc control mode can also

be described by Eq. 1. For constant P control nodes ki equals zero

while for constant Udc nodes ki is set to be ∞.

The reactive power injection can be controlled in two modes:

1) Constant Q: The reactive power Qs injected from the AC grid

to PCC is kept constant.

2) Constant Us: The converter adapts reactive power Qs to

maintain constant voltage Us at the AC bus.

The overall converter loss Ploss can be divided into three part:

1) Constant loss, including the filter, transformer load, and no-

load loss;

2) Active power loss depending on the converter current Ic
linearly;

3) Active power loss depending on the converter current Ic
quadratically.

Thus, the overall converter loss can be expressed by a

generalized function of converter current Ic as

Ploss,i � a + bacpIc,i + cac*I
2
c,i (2)

where a represents the constant loss; bac and cac are linear and

quadratic coefficients that correlated with the sub-module

topologies of the MMC stations; Ic is the RMS value of

converter current given by

Ic,i �
��������
P2
c,i +Q2

c,i

√ �
3

√
Uc,i

(3)

TheMTDC networkmodel used in this paper is similar to the

AC grid model. The DC power flow is determined by the line

resistances and voltage differences between DC nodes in a

steady-state condition. The current injected at DC node i can

be written as

Idc,i � ∑n

j�1, j ≠ i
Ydc,ij(Udc,i − Udc,j) (4)

where Ydc,ij is the admittance between DC node i and j; Idc,i is the

current injected at DC node i. For a monopolar DC grid, the

power injection of the DC grid at bus i can be written as

Pdc,i � Udc,iIdc,i (5)

Combining Eqs 4, 5, 1, a system of equations that can be

solved by an iterative Newton-Raphson (NR) method is given by⎧⎪⎪⎨⎪⎪⎩ Pdc,i − Udc,i∑n

j ≠ 1, j�iYdc,ij(Udc,i − Udc,j) � 0∀i: 1≤ i≤ n

Pdc,i − Pp
dc,i + ki(Udc,i − Up

dc,i) � 0∀i: 1≤ i≤ n
(6)

It should be noted that Eq. 6 is also applicable for DC nodes

that are not connected to AC grids or under outage state. For
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these nodes, both Pdc
* and k is set to be zero to achieve the

uniformity of expressions. Thus, the iterative Newton-Raphson

(NR) method can be used to solve the power flow of DC power

grid using Eq. 6.

Problem formulation

In this section, the total generation cost and active power loss

of the system are taken as optimization objectives. The models of

these targets are presented and the equality and inequality

constraints of the system are given. The total generation cost

is represented by the total cost of variable generators in the

isolated AC grid connected to the MTDC network. The total

active power loss is formulated as the sum of total DC

transmission loss and converter loss.

Objective functions
The model used to formulate the total generation cost is

min fc(x) � ∑nG

i�1(αiP2
G,i + βiPG,i + γi) (7)

where fc(x) is the total generation cost of the active power

produced by the changeable generators; PG,i is the active output

of the ith generator; αi, βi and γi are the constant, linear and

quadratic incremental cost gain coefficients of generator i,

respectively.

The overall active power loss of the MTDC system is given by

min fp(x) � PDCloss + Ploss � ∑n

i�1∑n

j�i+1PDCloss,ij +∑nc

i�1Ploss,i

(8)
where n and nc are the total number of DC nodes and converter

stations respectively; x is the control variable; Ploss,i is the active

power loss of converter i; PDCloss,ij is the transmission loss

between node i and j of the MTDC grid. The value of

PDCloss,ij is given by

PDCloss, ij � Gij(Udc,i − Udc,j)2 (9)

where Gij is the admittance between node i and j.

Constraints
The equality constraints of the system are given by

∑n

i�1Ps,i + Ploss � 0 (10)

where Ps,i is the converter loss is of the ith converter station; Ploss

the overall active power loss including converter loss and

transmission loss of the MTDC system.

The inequality constraints of the system can be written as

{ PG,i
min ≤PG,i ≤PG,i

max∀i: 1≤ i≤ ng
QG,i

min ≤QG,i ≤QG,i
max∀i: 1≤ i≤ ng

(11)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Udc,i

min ≤Udc,i ≤Udc,i
max∀i: 1≤ i≤ n

Idc,ij
min ≤ Idc,ij ≤ Idc,ij

max∀i: 1≤ i, j≤ n
Ps,i

min ≤Ps,i ≤Ps,i
max∀i: 1≤ i≤ n

Qs,i
min ≤Qs,i ≤Qs,i

max∀i: 1≤ i≤ n

(12)

where PG,i and QG,i are the active and reactive output of the ith

generator in the AC grids;Udc,i is the voltage at the ith node of the

MTDC system; Idc,ij is the line current between node i and node j;

Ps,i andQs,i are the active and reactive injection from the AC grid

to node i; ng is the total of generators; n is the total number of DC

nodes. The related inequality constraints for the MMC stations

are given by⎧⎪⎨⎪⎩ r 2min ≤ (Ps − P0)2 + (Qs − Q0)2 ≤ r 2max

k min ≤ k ≤ k max

Up
dc

min ≤Up
dc ≤Up

dc
max

(13)

where r min and r max are the minimum and maximum bounds

for the radius of the circle created by the PQ-capability of each

converter, whileP0 and Q0 are the centre of the circle; k is droop

coefficient of the MMC station; Udc
* is the voltage reference of the

MMC station.

Improved sequential AC-DC power
flow algorithm

The conventional sequential AC-DC power flowmethods for

master-slave control and DC voltage droop control (Beerten

et al., 2012; Beerten and Belmans, 2015) perform AC and DC

power flows iteratively, adding a SBI/DBI step to calculate the

power loss of the corresponding converter stations, which

increases the computational burden. Since a large number of

power flow solutions are required for the multi-objective particle

swarm optimization approach used in this paper, it is necessary

to reduce the time required for a single power flow calculation.

In this section, an improved power flow algorithm is

proposed. Different sub-module (SM) types including half-

bridge, full-bridge and mixed half- and full-bridge is

considered. To eliminate SBI/DBI, a power loss formula for

MMC stations with different SM types expressed by a

function of DC current is developed. Using the DC power

flow results, the active power injection Ps at the AC-grid

point of common coupling (PCC) can be computed, and

therefore the AC power flow iteration can be excluded from

the overall iteration loop.

Derivation of analytical MMC loss formula

The active power at the AC side of the converter Pc,i can be

represented as

Pc,i � 3mp
Udc,i

2
Ic,i cos (φ) (14)
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wherePc,i is the active power injected from the AC side of the ith

converter; Udc,i is the DC voltage at the bus connected to the ith

converter; m is the AC voltage modulation index; cos(φ) is the
power factor; The active power at the DC-side can be

expressed as

Pdc,i � Udc,iIdc,i (15)
where Idc,i and Pdc,i are the DC current and active power

injection at the DC side of the ith converter respectively.

Assuming the power loss of the converter is zero, the active

power injected at the AC and DC side of the converter equals.

The RMS value of the converter current at the AC side Ic,i can be

expressed by a function of Idc,i

Ic,i � Idc,i
2

3m
∣∣∣∣cos (φ)∣∣∣∣ (16)

A function of converter current Ic can be used to describe the

converter loss as (Beerten et al., 2012; Lei et al., 2016):

Ploss � a + bacpIc + cacpI
2
c (17)

whereIc is the RMS value of converter current; a represents

the constant loss, including the filter, transformer load, and

no-load loss;bac and cac are linear, quadratic coefficients that

correlated with the sub-module topologies of the MMC

stations. Substituting Eq. 16 into Eq. 17, the converter

loss can be represented by the DC current Idc as (Zhang

et al., 2022):

Ploss � a + bdc · Idc + cdc · I2dc (18)

where a, bac and cac are constant, linear and quadratic converter

loss coefficients for the DC current. The per unit value of bdc and

cdc for MMC with different SM types is given as:

cdc � 2
3
(NRon(2 − ρ) + Rl)( 1

m2cos 2(φ) + 1) (19)

bdc � 2k
π
⎛⎝NV0(2 − ρ) + fPUdc(Eon + Eoff + Erec)

VrefIref
⎞⎠ (20)

whereN is the total number of SMs in each converter arm; V0

is the saturation voltage; ρ is the percentage of the half-bridge

SMs; fP is the switching frequency of each SM; Eon, Eoff, and

Erec are the IGBT turn-on, turn-off, and the diode reverse

recovery energies; Vref and Iref are the voltage and current

reference of the switching energies; Ron is the on-state

resistance of; Rl is the resistance of the converter arm

reactors; k is defined by

k � 2

�����������
2

m2cos 2 φ
− 1

√
+ π − 2acos( �

2
√
2

m
∣∣∣∣cos (φ)∣∣∣∣) (21)

The calculated converter loss coefficients a, bdc and cdc for

HBSMs and FBSMs is shown in Table 1.

Improved power flow algorithm

In this section, an improved AC-DC power flow algorithm is

proposed, as shown in Figure 1. The power loss formula derived

in the previous section is used to calculate the converter loss of

MMC stations to eliminate the SBI/DBI step. In this method the

active power injected from AC grid to PCC can be calculated by

the DC power flow results, thus excluding the AC power flow

from the overall iteration loop and improving the efficiency of the

algorithm.

The power references P*and voltage reference U* of the

MMCs in droop control mode are set before the overall iteration

TABLE 1 Converter loss coefficients (in P.U.).

DC line a bdc cdc

Half-bridge 8.800 4.000 0.473 × 10−3

Full-bridge 6.700 0.956

FIGURE 1
Flowchart of the improved AC-DC power flow algorithm.
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loop and for the first overall iteration, the sum value of P(0)
loss,i and

P(0)
comp,i is estimated to be 0.015 Pdc,i.

After DC grid power flow calculated using Eq. 6, Idc,i and Pdc,i

is obtained. Here, the power loss formula derived in the previous

section is used to calculate the converter loss of MMC stations to

eliminate the SBI/DBI step. The active power loss of the converter

at node i can be obtained using Eq. 18, and then the active power

injected from the AC side of ith converter Pc,i is calculated by

Pc,i � Pdc,i − Ploss,i (22)
Ic,i can be calculated by Eq. 16 and then the complex equivalent

impedance loss Pcomp,i can be calculated by

Pcomp,i � real(1/(Gc,i + jBc,i))|Ic,i∣∣∣∣2 (23)

Thus, the active power injected from AC grid to PCC can be

calculated by

Ps,i � Pc,i − Pcomp,i (24)

where Ploss,i and Pcomp,i are converter loss and complex

equivalent impedance loss of the ith converter station

respectively. The active power injected from AC grid to PCC

Ps,i is calculated using the results of DC power flow and the SBI/

DBI step is eliminated.

The convergence of the overall iteration is given by����[P(k+1)
s,i − P(k)

s,i ]m����∞< ε (25)

where P(k+1)
s,i and P(k)

s,i are the calculated active the active power

injected from AC grid to PCC in the (k+1)th and kth iteration; m

is the total number of DC buses that has a PCC; ε is the maximum

permissible error. Therefore, the AC power flow is excluded from

the overall iteration loop. It should be noted that the AC grid

power flow can be calculated after the convergence of Ps,i if

needed.

Multi-objective optimization

The approach for MOPF is divided into two parts to

provide the best compromise solution according to the

preference of the decision-makers. First, the MOPSO

algorithm is used, and the Pareto optimal solution set

matching the requirements is obtained under the

optimization mechanism of the algorithm. Different

solutions are generated by changing the voltage references

and droop coefficients of the MMCs under adaptive droop

control. The multi-attribute decision-making process is then

carried out based on the subjective preferences of the decision

maker and the objective data of the Pareto optimal solution

set. The best compromise solution is then reached by

contrasting the decision-making steps using TOPSIS to

identify the optimal operating point that matches the actual

needs.

Multiple objective particle swarm
optimization (MOPSO)

MOPSO is a multi-objective problem-solving technique that

builds on PSO. In theMOPSOmethod, non-dominated solutions

are saved to approximate the Pareto front and considered as an

optimal solution set for decision-makers to select. The overall

framework of theMOPSO algorithm is shown in Figure 2 and the

main steps are listed as follows:

Step 1: Input the initial variables, including 1) MTDC system: line data,

node data, PCC node number, initial steady state power flow; 2) MMC

station: Submodule (SM) type, constant, linear, quadratic coefficients

adc, bdc and cdc of each converter; 3) AC system: incremental cost gains

of generators; 4) Constrains 5) MOPSO parameter.

Step 2: Initialize the position and velocity of particles.

FIGURE 2
Flowchart of the MOPSO algorithm.
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Step 3: Calculate the power flow of the MTDC system using themethod

introduced in section 2.2, the value of the objective function for each

particle can be found according to the power flow solution.

Step 4: Evaluate each particle and determine the initial personal optimal

position pbest and global optimal position gbest. Create an external

repository to keep non-dominated solutions.

Step 5: Adjust the velocities and positions of all particles to change the

voltage references and droop coefficients of the MMCs under adaptive

droop control.

Step 6: Calculate the power flow of the MTDC system using themethod

introduced in section 2.2 and compute the objective functions using the

power flow results.

Step 7: Evaluate the calculated objective functions according to the

updated value. Update pbest, gbest and the external repository

containing non-dominated solutions.

Step 8: Check if the end condition is met. If Niter < Nitermax, increase the

iteration number Niter and back to step 5.

Step 9: Output the obtained Pareto-optimal solutions.

Step 10: End MOPSO

Optimal decision based on Pareto
frontiers

In an actual power system, many factors, such as the

economy and power quality, should be taken into

consideration, leading to varied preferences for different

compromise solutions on the Pareto Frontier curve among

decision-makers. As a result, a reasonable strategy is required

to choose one or more superior options for decision-makers.

The Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) is a multi-criteria decision analysis method

established by Ching-Lai Hwang and Yoon in 1981. It is a

method for ranking solutions based on how close the

solutions are to an idealized target by weighing the relative

merits of the available solutions. The evaluation solution is

optimal if it has the shortest geometric distance from the

positive ideal solution (PIS) and the longest geometric

distance from the negative ideal solution (NIS); and vice

versa. The procedure of TOPSIS is given as follows:

1) Create an evaluation matrix X � (xij)m×nconsisting of m

solutions and n criteria

2) Normalize the evaluation matrix X � (xij)m×nto form the

matrix D � (dij)m×n, where dij � xij���������∑ m
k � 1

x2
kj

√
3) Create the weight matrix W � (wj)n, and the weighted

normalized decision matrixT � (tij)m×n is then calculated

by tij � wj · dij.
4) Determine the best solution S+ and the worst solution S−. The

best alternative S+ is formed by the maximum value of criteria

having a positive impact and theminimumvalue of criteria having

a negative impact, while the worst alternative S− is formed by the

minimum value of criteria having a positive impact and the

maximum value of criteria having a negative impact.

5) For each solution, calculate the Euclidean distance L+i to the

positive ideal solution and L−i to the negative ideal solution:

L+
i �

�������������∑n

j�1( S+j − tij)2√
, i � 1, 2, ..., m (26)

L−
i �

�������������∑n

j�1( S−j − tij)2√
, i � 1, 2, ..., m (27)

6) Calculate the similarity according toL+i and L−i by:

ωi � L−
i

L+
i + L−

i

, i � 1, 2, ..., m (28)

7) Rank the alternatives according to their similarity ωi.

The larger ωi indicates that the corresponding solution is

closer to the positive ideal solution. In another word, the solution

is considered to be better with a larger similarity ωi. Using

TOPSIS, different weights can be applied for different

decision-makers, and thus different compromise solutions are

calculated for various preferences.

Case studies

In this section, a six-terminal MTDC system integrated with

isolated AC grids through MMC stations is used as the test

system and the parameters of the system are presented. The

MOPSO method is used to approximate the Pareto front and the

decision-making process is carried out using TOPSIS.

FIGURE 3
Six-terminal MTDC system.
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Compromise solutions for various preferences and extreme

solutions are calculated and compared with the solution

before optimization to verify the effectiveness of the proposed

approach.

System structure

As shown in Figure 3, the MTDC system is a meshed DC grid

with six DC buses and seven branches. DC nodes 1, 2, 4, 5, and 6

are connected to five isolated AC grids through five MMC

stations, while the DC node 3 does not have a converter

station connected to the AC grid. MMC-1, 2 and 5 are in

droop control mode and connected to AC area 1,2 and

5 respectively, while MMC-3 and 4 are in constant P control

mode with their droop coefficients to be zero. The parameters of

the above network in per unit value are shown in Table 2 and

Table 3. The MMCs connected to DC node 1 and node 2 are

based on FBSMs, while other MMCs are based on HBSMs. The

base capacity Pbase and voltage Vbase are 100 MW and 640kV,

respectively.

It is assumed that each of area 1, 2, and 5 has four adjustable

generators that supply power to the corresponding MMC

stations. In the same AC system, each generator has a

different cost curve which was regarded as a quadratic

function, as shown in Table 4.

Parameter setting

The controlled active and reactive powers under master-

slave control given in Table 5 are used to give an initial

steady-state condition for the test system. The droop

coefficients for MMC 1,2 and 5 are initially set to be 25,

50 and 12.5 respectively. The calculated steady-state grid

power flow for the given condition is shown in Table 6. In the

corresponding DC terminals, the values in Table 6 were used

as initial power and voltage references, as shown in Table 7.

These values are applied to the test system and used to

calculate the objective functions before optimization.

TABLE 2 DC transmission line branch data (in P.U.).

DC line 1–2 1–3 1–5 2–6 3–4 3–6 5–6

R 0.01 0.01 0.019 0.016 0.01 0.016 0.004

TABLE 3 MMC parameters.

MMC station
number

1 2 3 4 5

Rated Power PR (MW) 650 650 800 650 750

Sub-module Types FB FB HB HB HB

TABLE 4 Generator cost curves.

Area Gen Cost curve

1 1 0.002P2
1 + 0.2P1 + 13

2 0.003P2
1 + 0.1P1 + 15

3 0.001P2
1 + 0.15P1 + 15

4 0.002P2
1 + 0.1P1 + 14

2 5 0.001P2
1 + 0.3P1 + 25

6 0.003P2
1 + 0.3P1 + 22

7 0.005P2
1 + 0.1P1 + 26

8 0.003P2
1 + 0.2P1 + 24

5 9 0.002P2
1 + 0.3P1 + 18

10 0.003P2
1 + 0.2P1 + 16

11 0.003P2
1 + 0.2P1 + 15

12 0.002P2
1 + 0.1P1 + 17

TABLE 5 Desired DC grid power flow pattern (in P.U.).

Terminal no. 1 2 3 4 5 6

Udc 1 - - - - -

PS - -4 - 1.5 3.5 -0.5

QS - 0.25 - - 0.9 -1

TABLE 6 Numerical solution from power flow analysis (in P.U.).

Terminal no. 1 2 3 4 5 6

Udc 1 1.0186 0.9852 0.9695 0.9767 0.9864

Pdc -0.8436 -3.9488 0 1.5147 3.5678 -0.4884

TABLE 7 MMC parameters (in P.U.).

MMC station
number

1 2 3 4 5

Rated Power PR (MW) 650 650 800 650 750

Power Reference Pp
i -0.8436 -3.9488 1.5147 3.5678 -0.4884

Voltage Reference Up
i 1 1.0186 0.9695 0.9767 0.9864

Sub-module Types FB FB HB HB HB

Droop coefficient k 25 50 0 0 12.5
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Multi-objective optimization

It is assumed that the load (except PCC node injections) of area-

1,2 and 5 supported by the changeable generators are 1 p.u., 2 p.u.

and 2 p.u. respectively. Before optimization, the overall active power

loss of the MTDC network is 32.2034MW and the total generation

cost of the system variable generator units is 440.3697 USD/h.

By changing the voltage reference and droop coefficient of

the MMC station under droop control mode, the active power

FIGURE 4
Distribution of Pareto optimal sets.

TABLE 8 Comparison of extreme solutions and the solution before
optimization.

Solutions f c(x) (USD/h) f p(x) (MW)

Solution before optimization 440.3697 32.2034

Extreme solution 1 384.5517 27.4912

Extreme solution 2 412.0183 21.3654

TABLE 9 Comparison of compromise solutions and the solution before optimization.

Solutions Scenarios f c(x) (USD/h) f p(x) (MW) Sd+ Sd- Similarity

Solution before optimization - 440.3697 32.2034 - - -

Compromise solution 1 1 396.5066 23.3805 0.0425 0.0682 0.6160

Compromise solution 2 396.7883 23.3115 0.0427 0.0684 0.6158

Compromise solution 5 2 401.7346 22.2290 0.0371 0.0841 0.6939

Compromise solution 6 402.3441 22.1214 0.0377 0.0855 0.6939

Compromise solution 7 3 389.6553 25.4440 0.0406 0.0801 0.6637

Compromise solution 8 389.4011 25.5351 0.0410 0.0808 0.6636

Compromise solution 3 4 398.4548 22.9084 0.0427 0.0711 0.6252

Compromise solution 4 397.7111 23.0813 0.0421 0.0703 0.6252
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injection at the PCC nodes can be modified. As a result, the

output of each generator in these areas and total active power loss

of the test system are different from the value before

modification, thus changing the total generation cost and

active power loss of the test system.

The droop coefficients are set between 12.5 and 100 for MMC

stations in droop control mode, and the voltage references of the

relatedDCnodes are set between 0.95 and 1.05. The Population size,

repository size, and maximum iteration number are set to 100, 200,

and 200 respectively. After optimization usingMOPSO according to

the proposed approach, the distribution of Pareto-optimal solutions

is given in Figure 4.

As shown in Fig. 4, 200 non-dominated solutions are obtained at

the end of the iteration. Table 8 lists the two extreme Pareto optimum

alternatives as well as the initial solution before optimization. Extreme

solutions 1 and 2 are the extreme solutions for the least generation

cost and the minimal active power loss objectives, respectively. It can

be seen from Table 8 and Figure 4 that:

1) The two objectives in this paper conflict with each other and

cannot be optimized at the same time. In other words, the

decrease of the total generation cost would lead to a higher

total active power loss while lowering total active power loss

will result in more generation cost.

2) Compared to extreme solution 1, extreme solution 2 has fewer

power loss and higher generation cost, whereas both objectives of

extreme solution 1 and extreme solution 2 have reduced total

active power loss and generation cost when compared to the

solution before optimization.

Optimal decision based on Pareto
frontiers

Table 9 shows the obtained compromise solutions for various

settings for the weight of each objective. The weight for objective

fc(x) in scenarios 1, 2, and 3 is set as 50%, 25%, and 75%,

respectively. The weight of generation cost fc(x) and active

power loss fp(x) in scenario 4 is calculated using the entropy

weight method (EWM). The determined weight values for

generation cost and active power loss are 44.507% and

55.493%, respectively. According to the results, all of the

solutions developed have reduced total active power loss and

generation cost when compared to the solution before

optimization. For higher weight proportion, the reduction of

the corresponding weighted target is more significant.

Conclusion

In this paper, a multi-objective OPF algorithm is proposed to

reduce the total active power loss and generation costs of an MTDC

grid connected to several isolated AC grids. A six-terminal MTDC

system with five nodes connected to MMCs under different control

modes is constructed. An improved sequential power flow was

applied to eliminate the SBI/DBI step and the AC power flow

iteration. By using MOPSO, the voltage references and droop

coefficients of the MMCs under adaptive droop control are

changed to generate different power flow patterns and a set of

non-dominated Pareto-optimal solutions is obtained. The two

optimal targets can be realized together with compromise by

incorporating TOPSIS as a decision maker and the “best”

solutions found under severe and varied compromise settings are

discussed after the simulation of the constructed MTDC grid. The

case study results show that all solutions found under different

situations after optimization are superior to those found initially.

The proposed approach applies to a generalized MMC MTDC

model that interconnects arbitrary buses in one or more AC grids

and has arbitrary topology. The limitation of the proposedmethod is

that the grid parameters for the AC network connected to the

MTDC grid are not considered. Also, the stability of the system

under the optimized solution is not investigated.
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