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Abstract 

 
In this article, we study the mathematical characteristics of the inverse power Pranav distribution. The 

proposed distribution has three special cases namely Pranav, inverse Pranav and inverse power Pranav 

distributions. In addition with the basic properties of the distribution, the maximum likelihood method was 

employed in computing the parameters of the distribution. The 95% confidence interval was estimated for 

each of the parameters and finally, the distribution was applied to 128 bladder cancer patients to illustrate its 

applicability, and compared to Pranav distribution, inverse power Lindley distribution and inverse Ishita 

distribution. However, the inverse power Pranav distribution proved superiority over the competing models. 

 

 
Keywords: Pranav distribution; inverse power pranav distribution; stochastic ordering; exponentiated inverse 

power pranav distribution; goodness of fit test. 
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1 Introduction 

 
In statistical theory, the modelling and analysis of life data is a significant facet of statistical work. In many 

applied sciences, statistical distributions are needed for modelling lifetime datasets with monotone and non-

monotone hazard rates. Oftentimes, such datasets are seen in biological sciences, engineering, insurance and 

finance, amid others. Modelling of these datasets, aid the description of the event from which the datasets were 

obtained. The shape of the data gives explicit description and understanding of the event under study. Thus, 

appropriate decision can be taken base on the results from the analysis. From a different look, the failure 

behaviour of any system can be deemed as a random variable owing to the distinctions from one system to 

another consequential from the nature of the system. Consequently, it appears logical to find a statistical model 

that can fit appropriately, the failure of the system. Also, survival data are classified by their hazard rate, for 

instance, the number of deaths per unit in a period of time, which can be monotone or non-monotone. For 

modelling such data, many lifetime distributions have been developed based on hazard rate. One of such 

distribution is the Pranav distribution proposed by [1] with probability density function (pdf) and cumulative 

density function (cdf) respectively given by 
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The mathematical and statistical characteristics of this distribution and method of estimation have been 

explicitly derived in the paper. The distribution was subjected to two life datasets from engineering and found to 

be superior over Lindley, exponential, Akash, Ishita, Shanker and Sujatha distributions. [2] developed the 

inverse Lindley distribution and provided the properties of the proposed distribution including the estimation 

method. They further proposed its applicability as a stress-strength reliability model for survival data analysis. 

The estimation of stress-strength parameters and, the stress-strength reliability were approached by both 

classical and Bayesian paradigms. Two real data sets representing survival of Head and Neck cancer patients 

were fitted using the inverse Lindley distribution and compared with inverse Rayleigh distribution. Inverse 

Rayleigh distribution was found to perform less than the inverse Lindley distribution.  

 

In another study, [3] proposed a new three-parameter inverse distribution, called extended inverse Lindley 

distribution. He argued that the model has more flexibility than other types of inverse distributions due to the 

shape of its density as well as its hazard rate functions. They derived the pdf, cdf, hazard rate function, the 

moments, moment generating function, and the quantile function in simple mathematical forms. Maximum 

likelihood estimation of the parameters and their asymptotic standard distribution and confidence interval were 

estimated. The measure of the uncertainty such as Rényi was also derived. Application of the model to a real 

data set is presented and compared to other extension of inverse Lindley and inverse Weibull distributions, such 

as inverse Lindley, generalized inverse Lindley, inverse Weibull and generalized inverse Weibull. Other related 

literatures on this include the articles by [4-6], among others. In this study, we aim at providing the 

mathematical characteristics of the distribution proposed by [7] and to demonstrate its applicability using a 

lifetime data set. The rest of the paper is organized as follows. In Section 2, the inverse power Pranav (IPP) 

distribution and the graphs exhibiting the behaviour of distribution for varying values of the parameters. In 

Section 3, the survival and hazard functions were presented including their curves. Section 4 contains the 

mathematical characteristics of the inverse power Pranav distribution, the numerical application of the 

distribution to bladder cancer and estimation of the 95% confidence intervals for the parameters. Finally, in 

Section 5 the work is crowned with conclusion.  

 

2 Inverse Power Pranav Distribution  

 
[8] proposed a new distribution known as the inverse power Pranav distribution. The density function of the 

inverse power Pranav distribution is expressed as 
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Remark: for 1,  the inverse power Pranav distribution returns to a one parameter inverse Pranav distribution 

defined by the pdf 
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The cdf of the inverse power Pranav distribution in (2.1) is given by 
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Fig. 1a, 1b, 1c and 1d show the behaviour of pdf and cdf of the proposed distribution; A close look at the 

plots reveals that the distribution has an increasing and decreasing function 

 

3 Survival and Hazard Function 

 

For a distribution with cdf  ;F x  , the survival function  ;S x   is defined as 
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   ; 1 ;S x F x                           (3.1) 

 

Consequently, the survival function of the inverse power Pranav distribution is 
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And the hazard function  ;h x    of inverse power Pranav distribution is giving by 
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The nature of survival and hazards functions are shown in Fig. 2a, 2b, 2c and 2d, for varying values of and 
 

 

 
 

Fig. 2. Graph of survival and hazard function of IPP 
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Fig 2a:survival plot of IPP
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Fig 2b:Survival plot of IPP
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Fig 2c: hazard plot of IPP
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4 Properties of Inverse Power Pranav Distribution 

 
4.1 Moments 

 
In order to study the significant characteristics of any distribution, the moment of the distribution under study 

must be found. Moments enable one study important features of a distribution such as mean, variance, skewness 

and kurtosis. The most important aspect of a moment is the rth  moment. This is because; it enables easy 

derivation of other moments. 

 

Theorem 4.1: Let X  be a random variable that follows inverse power Pranav distribution with parameters 

 ,  . Then, the rth moment is given as 
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The rth moment of a distribution is given by the expression 
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By letting t x , applying the transformation technique gives and substituting appropriately in eq.(4.3) gives 
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Simplifying further, one obtains the rth moment of the inverse Pranav distribution as 
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By substituting for 1and 2r  , we get the first and second crude moments 
' '
1 2and  .

'
1  is the mean given by 
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The variance of the inverse power Pranav distribution can be obtained as follows 
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4.2 Moment Generating Function 

 

Theorem 4.2: Given a random variable X , such that   ~ ,X IPP   , the moment generating function is 

given by 
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For a continuous distribution, the moment generating function is  
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Taylor’s series expansion of  
txe gives 
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Where   'k
rE X  . Thus, the moment generating function of IPP distribution becomes 
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4.3 Distribution of Order Statistics and Quantile Function of Inverse Power Pranav 

Distribution 

 
Theorem 4.3: Suppose X is a random variable that follows inverse Power Pranav distribution with parameters
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Inserting eq. (2.1) and (2.3) into (4.11), with little binomial expansion, we get 
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The series expansion of  
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Substituting (4.13) into (4.12), we obtain the pdf of the th  order statistics of inverse power Pranav 

distribution. Thus,  
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Also, for the cdf of the order statistics, as defined in [9] is given by 
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Following similar method, equation (4.16) becomes 
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4.3.1 Quantile function 

 

In order to generate random numbers, we use the quantile function. Given the cdf,  F x  , the qth quantile p is 

the value of the random variable X defined by 
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Plugging in  IPPF x in (4.18), we get 
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Simplifying equation (4.19), we obtain the quantile function of inverse power Pranav distribution. 

Consequently, we have 
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4.4 Stochastic Ordering 

 
In order to compare the behaviour of positive continuous random variables, we use stochastic ordering. As 

stated by [10], a random variable X  is supposed to be lesser than a random variable Y  in the 
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b) Hazard rate order  hrX Y  if    ;X Yh x h x x   

c) Mean residual life order  mrlX Y  if    ;X Ym x m x x   
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The results established by [11] is as follows 
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The IPP distribution is well-ordered based on the one with the robust likelihood ratio.    

 

Theorem 4.4. Suppose  1 1~ ,X IPP   and  2 2~ ,Y IPP   . If 1 2  and 2 1  , then lrX Y . Hence, 

hrX Y , mrlX Y  and  stX Y . 

 
To establish the proof, the likelihood ratio is  
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If 1 2    , we have 
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Taking the natural logarithm of both sides, we obtain 
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Further simplification, one arrive at the following results  
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For 1 2 1 2and     ,
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 . This justify the proof that lrX Y and hrX Y , mrlX Y  and  

stX Y .  

 

4.5 Entropy of IPP Distribution 

 
The entropy of a random variable X  measures the degree of uncertainty of distribution. The larger the entropy 

value, the greater the uncertainty in the data. There are several kinds of entropy, here only two will be 

considered. The R𝑒́nyi entropy and Tsallis Entropy. 

 

4.5.1 R𝒆́nyi and Tsallis entropy of IPP distribution  

 

Theorem 4.5: Suppose  ~ ,X IPP   , the R𝑒́nyi and Tsallis entropy are defined by 
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R𝑒́nyi entropy is defined as 
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Applying binomial series to eq. (4.25), we get 
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If we let t x  , a careful simplification will give  
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Equation (4.27) can be transformed to gamma function. Thus, we have 
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Similarly, Tsallis entropy is obtained as follows 
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By applying binomial expansion theorem in equation (4.30), and simplifying, we obtain the following 
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Applying gamma function, consequently yields  
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4.6 Maximum Likelihood Estimation of the Parameters of IPP Distribution 
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The likelihood function denoted by is given by 
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The log-likelihood function of the inverse power Pranav distribution is thus given by 
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The maximum likelihood of the estimators is obtained by taking the partial derivative of L with respect to each 

of the parameters. Consequently, we have 
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At 0and 0
L L

 

 
 

 
, we obtain a system of nonlinear equations. Solving the nonlinear equations manually is 

very monotonous and unwieldy. Hence, R software and for estimating the required parameters.  

 

4.7 Application 

 
The objective of this section is to encourage the use of the IPP distribution by displaying a successful 

application to modelling lifetime data set.  The data set for this study were reported by [14] and [15]. It 

represents the remission times (in months) of a random sample of 128 bladder cancer patients. The data set is 

presented as follows 

 

0.08, 2.09,  3.48,  4.87,  6.94,  8.66,  13.11,  23.63,  0.20,  2.23, 3.52, 4.98, 6.97,  9.02,  13.29, 0.40,  2.26, 

3.57, 5.06, 7.09, 9.22, 13.80,  25.74,  0.50,  2.46 , 3.64,  5.09,  7.26,  9.47,  14.24,  25.82, 0.51, 2.54, 3.70, 

5.17, 7.28, 9.74, 14.76, 26.31,  0.81,  2.62,  3.82, 5.32,  7.32,  10.06,  14.77, 32.15,  2.64,  3.88,  5.32,  7.39,  

10.34, 14.83,  34.26,  0.90,  2.69, 4.18,  5.34,  7.59,  10.66,  15.96,  36.66, 1.05,  2.69,  4.23,  5.41, 7.62, 

10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41,  7.63,  17.12,  46.12,  1.26, 2.83,  4.33,  5.49,  7.66,  11.25, 17.14, 

79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46,  4.40, 5.85,  8.26,  

11.98, 19.13, 1.76, 3.25,  4.50,  6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28,  2.02, 3.36, 6.76, 

12.07,  21.73, 2.07, 3.36,  6.93,  8.65, 12.63, 22.69, 78.0,  80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 

105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0,139.0, 154.0 

 

Table 1 below shows the summary of the data. 

 

Table 1. Data summary 

 

Minimum 0.080000 

Maximum 154.00000 

1. Quartile     3.655000 

3. Quartile    17.305000 

Mean 23.958667 

Median    7.605000 

Variance 1400.8847 

Stdev 37.428395 

Skewness 1.938028 

Kurtosis   2.352758 

 

In order to assess the effectiveness of the IPP distribution, the data set given above was fitted and compared 

with three other distributions: Pranav distribution (PD), Power Inverse Lindley distribution (IPL) by [16] and 

Inverse Ishita distributions by [17]. To assess the goodness-of-fit of above distributions, we employed the 

Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Log-likelihood LL, which 

are computed using the following formula: 

 

Table 2. Parameters, S.E, LL, AIC, BIC, K-S statistics and its p-value of the fitted distributions 

 

Model Parameters S.E LL AIC BIC KS p 

IPP α =3.2111 0.1923 -606.6425 1217.285 1223.306 0.089 0.1753 

 β = 0.7078 0.0361      

PD α = 0.1683 0.0069 -947.9402 1897.88 1900.891 0.51794 6.66E-16 

 α= 0.6463 0.0364      

IPL β = 3.2541 0.2367 -609.9978 1223.996 1230.017 0.09936 0.0966 

IID θ = 3.2483 0.212 -642.1729 1286.346 1289.356 0.99885 6.66E-16 

 

 the Akaike information criterion [18] defined by 

   

2ln 2AIC L k   ;                                                          (4.39) 
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 the Bayesian information criterion [19] defined by  

 

   ˆln 2lnBIC n k L                                                                                                (4.40)

       

where, k   is the number of estimable model parameters. L̂  is the maximized likelihood of the vector of 

parameters   and n  is the sample size.The distribution with least AIC, BIC and log-likelihood LL  is 

considered as best. Table 2 above shows the results obtained using R software packages. According to the small 

values of both AIC, and BIC, the inverse power Pranav distribution performs better than the other competing 

models. In addition, looking at the large LL value for the IPP distribution, we deduce that it provides a good fit 

for the given data and hence, it has proved to be the appropriate model. Table 3 below shows the estimates of 

the parameters and their confidence intervals 

 

Table 3. MLEs of the parameters IPP distribution and their C.I 

 

Model parameter S.E 95% confidence interval 

      Lower Limit Upper Limit 

IPP α=3.2111 0.1923 2.8342 3.588 

β = 0.7078 0.0361 0.637 0.7786 

PD α=0.1683 0.0069 0.1548 0.1818 

IPL α = 0.6463 0.0364 0.575 0.7176 

β = 3.2541 0.2367 2.7902 3.718 

IID θ = 3.2483 0.212 2.8328 3.6638 

 

5 Conclusion 

 
In this paper, we provide the mathematical characteristics of the inverse power Pranav distribution as well as 

hazard and Survival functions. We discourse a maximum likelihood estimation of the model’s parameters. To 

illustrate the application of the distribution, the IPP distribution was subjected to a real data set, bladder cancer 

patients. A test of goodness of fit was carried out using K-S Statistics (Kolmogorov-Smirnov Statistics) to 

determine its superiority over the other competing models. Also, a 95% confidence interval was provided for the 

parameter estimates as shown in table 3. Each of the estimates for the parameters lies within the confidence 

limits.  
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