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Abstract 
Root-knot nematodes (Meloidogyne spp.) considerably affect their plant hosts, causing extensive damage in the 
world agriculture. The most widely used method to control these pathogens is through the intensive application 
of nematicides, despite being highly toxic to humans, animals, and the environment. The urgent search for 
alternative forms of control based on natural resources that are effective, provide a targeted strategy that is less 
toxic and less harmful to the environment. The species Solanum stramonifolium Jacq. (Solanaceae) have been 
described as resistant to root-knot nematode infection and other diseases, such as fungi and bacteria. 
Nematotoxic assays here presented demonstrated that aqueous crude seed extract from S. stramonifolium is very 
effective against second stage juveniles (J2) of M. incognita even at very low concentrations such 100µg mL-1 
during in vitro bioassays. Furthermore, this extract also demonstrated a nematicidal effect after a heating process 
at 50 °C, killing more than 90% of M. incognita J2. No toxic activity was observed against non-target organisms, 
like bacteria, and the free-living nematode Caenorhabditis elegans at concentrations varying from 25 to 512 µg 
mL-1. Finally, greenhouse assays showed that external dialysate (ED) can be used to control nematodes in the 
soil, and that the plants treated with the dialysates display a reproduction factor lower than the synthetic 
nematicide used as positive control. 

Keywords: agriculture, nematicide, nematode, plants, rootknot, Solanaceae 

1. Introduction 
Root-knot nematodes (RKN) belonging to the genus Meloidogyne spp. are phytopathogens with great impact on 
agriculture due to the damage they cause to crops. Yearly losses of around US$157 billion rank these nematodes 
as one of the most severe pathogens affecting food production worldwide (Abad et al., 2008). These nematodes 
induce galls in the host’s root, leading to metabolic and physiological changes that reduce plant vigor and 
productivity, causing defoliation, stunt growth, and promoting yellowing and wilting of leaves (Abad et al., 
2008). 
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During many years, broad spectrum pesticides such as methyl bromide, organophosphate and carbamate-based 
have been used as nematicides. However, since 2010 some of those have been banned in Europe and other 
continents or have had their use restricted. Recently other types of nematicides against RKN, associated with a 
lower toxicity and lower environmental impact, like fluoroalkenyl thioethers nematicide, have been applied for 
nematode control in crop species (Kearn, Ludlow, Dillon, O’Connor, & Holden-Dye, 2014).  

The use of natural extracts and compounds obtained from plants might be considered as an alternative method 
for the control of phytoparasitic nematodes. Nonetheless, alternative candidate compounds are still insufficiently 
commercially explored and the potential effects of those on the environment and human health must be 
addressed (Timper, 2011; Viaene, Coyne, & Davies, 2013). Studies of plant extracts have shown that the 
nematotoxic effect can be associated with the presence of phytochemicals such as alkaloids, terpenes, tannins, 
flavonoids, glucosinolates, isothiocyanates and organic acids (Caboni & Ntalli, 2014; Caboni et al., 2015; Naz et 
al., 2016; Ntalli & Caboni, 2012; Prakash et al., 2014). Moreover, nematotoxic activity has also been linked with 
proteins found in seeds, such as CpPRI from Crotalaria pallida (Andrade et al., 2010; Colgrave, Kotze, Ireland, 
Wang, & Craik, 2008).  

Further detailed investigation of natural compounds with specific nematotoxic activity is imperative, as those can 
constitute a promising alternative strategy to control nematode pests in agriculture. Several Solanaceae species 
showed activity against M. incognita, such as Datura stramonium, D. innoxia, D. tatula (Babaali, Roeb, 
Hammache, & Hallmann, 2017) and Brugmansia suaveolens (Nandakumar, Mayil Vaganan, Sundararaju, & 
Udayakumar, 2017) and Solanum melongena L. (Akhter & Khan, 2018). Candidate species for investigation, 
such as Solanum stramonifolium Jacq. (Solanaceae), which can be found in various regions worldwide and is 
known for its potential to be resistant to RKN nematode infection, other pests, and disease caused by fungi and 
bacteria (de Mendonça, de Santana, Mattos, & Pinheiro, 2010; Gousset et al., 2005). 

Thus, the objective of this work was to evaluate the activity of Solanaceae plant extracts useful to nematodes 
control and to elucidate their biotechnological potential. 

2. Method 
2.1 Plant Material 

The S. stramonifolium seeds (Accession-CNPH19) were provided by the Plant Germplasm Bank from Embrapa 
Hortaliças-DF/Brazil. The plants were cultivated in Betamax commercial substrate under greenhouse conditions, 
respecting the natural photoperiod and with a temperature ranging between 19 and 32 °C, at Embrapa Genetic 
Resources and Biotechnology-DF/Brazil. Twenty days after sowing, seedlings were transplanted to plastic pots 
of 500g each containing a mixture of 60% ordinary soil, 30% sand and 10% substrate. 

2.2 Nematode Material, Egg Collection and Hatching 

Pre-parasitic nematodes (J2s) were generated as described by Hussey (1973). Tobacco (N. benthamiana) plants 
were inoculated with 1500 J2 under greenhouse conditions, and three months old plant roots were carefully 
washed in water and homogenized in a blender with a 0.5% aqueous sodium hypochlorite solution. The eggs 
were placed in a hatching chamber with distilled water for 48 h and nematodes were counted using a Peter’s 
slide under an Olympus BH2 B071 microscope (Dickson & Struble, 1965). For non-targeted organism assay, 
adults of Caenorhabditis elegans were grown on 8P NGM plates as described by (Lu & Goetsch, 1993; Machado 
et al., 2015).  

2.3 Preparation of Crude Seed Extracts 

The aqueous crude extracts (ACE) were obtained using Solanum stramonifolium seeds extracted with water, as 
described by Rocha et al. (2017). The supernatants were collected and freeze-dried in a Savant-Super Modulyo 
(Thermo Fisher, GA, USA) lyophilizer. The dried extracts were subsequently weighed and stored at -20 °C. The 
ACE was resuspended in distilled water to perform the nematode bioassays. 

2.4 Fractionation of Aqueous Extract 

The ACE was fractionated as described by Rocha et al. (2017). Fifty grams of S. stramonifolium seeds were 
solubilized in 150 mL of distilled water using gentle agitation during 10 min at 4 °C. The solution was then 
transferred to dialysis tubing Spectra/Phor 3 with a molecular weight of 3.5 kDa (Spectrum Laboratories inc.) 
and dialyzed with 5 L of distilled water for 12 h at 4 °C. The S. stramonifolium internal dialysate (ID) containing 
molecules > 3.5 kDa and external dialysate (ED) containing molecules < 3.5 kDa were collected, freeze-dried, 
weighed, and then stored at -20 °C. 
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2.5 Nematotoxic Activity of ACE, ID and ED 

The nematotoxic activity was evaluated as described by Rocha et al. (2017). The ACE (10 mg mL-1), ID and ED 
(5 mg mL-1) were diluted each in distilled water. Aliquots of 100 µL from each test solution were then transferred 
individually to microtubes already containing a suspension of nematodes (100µL) in water with 60 J2 and 
completed with distilled water reaching a total final volume 1000 µL. The treatments were replicated three times. 
The microtubes were incubated for 48 h at 27±1 °C in a dark room. Distilled water and ethyl alcohol 70% (EtOH) 
were used as negative and positive controls, respectively. After a 48 h exposure period, the mobile and paralyzed 
J2 of M. incognita were observed and counted microscopically. The paralyzed nematodes were then submitted to 
a recovery assay. For nematode recovery assay, J2 displaying a dead posture (paralyzed and stretched form) were 
transferred to 1.5 mL microtubes and centrifuged at 4000 RPM for 10 min. The supernatant was discarded and 
the J2 were carefully re-suspended in 1.5 mL of distilled water. This procedure was repeated three times and after 
the last wash, the nematodes were left in distilled water for more than 12 h. The juveniles were then counted 
again to determine nematicidal or nematostatic activity. The statistical analysis of dead and alive J2 after water 
treatment was evaluated using ANOVA and Tukey’s mean comparison tests, using software PAST v3 (p < 0.05). 

2.6 Thermostability Assay of ACE, ID and ED 

To certify the thermostability, ACE, ID and ED were incubated in a water bath for 24 h at 50 °C. The ID (100 
and 200 µg mL-1) and ED (100 and 300 µg mL-1) were used to confirm the activity against J2 of M. incognita, as 
previously described. The test was performed in experimental triplicate. ANOVA and Tukey’s mean comparison 
tests were used for statistical analysis using software PAST v3 (p < 0.05). 

2.7 Hemolytic Assay 

Lyophilized ACE (300 µg mL-1), ID and ED (25, 50 and 100 µg mL-1) were resuspended in 0.9% NaCl, filtered 
(utilizing a 0.22 μm pore size; Millipore Corp., Bedford, Mass.), sterilized and incubated with bovine red cells 
obtained from blood samples. The hemolytic activity was monitored using spectrophotometry, measuring 
absorbance at 567 nm. Distilled water and PBS were used as positive and negative controls, respectively. The 
ANOVA and Tukey’s mean comparison tests were used for statistical analysis using software PAST v3 (p < 
0.05). 

2.8 Bioassays Using Non-targeting Organisms 

The antibacterial assays using ACE were carried out according to Mulder et al. (2015). Staphylococcus aureus 
(ATCC 25923) and Escherichia coli (ATCC 8739) strains were used to evaluate the non-target activity of S. 
stramonifolium extract. For each assay, chloramphenicol (30 µg mL-1) was used as positive control and LB 
medium as negative control. To verify the minimum inhibitory concentration (MIC), the S. stramonifolium ACE 
was serially diluted from 2 to 500 μg mL-1 in LB medium. The MIC was determined as the lowest concentration 
that produced complete growth inhibition (100%) in comparison to the negative control. The ANOVA and 
Tukey’s mean comparison tests were used for statistical analysis using software PAST v3 (p < 0.05).  

2.9 Free Living Caenorhabditis Elegans Nematode Assay 

To verify the non-target activity of ID and ED fractions on C. elegans, 20 nematodes were incubated with 
different concentrations (25 and 200 µg mL-1) of each dialysate for 24 h at 25 °C in C. elegans maintenance 
medium (CeMM) (Lu & Goetsch, 1993). The static nematodes were counted, using a light microscope, and were 
considered dead. The bioassay was performed in triplicate, using CeMM as negative control. The ANOVA and 
Tukey’s mean comparison tests were used for statistical analysis using software PAST v3 (p < 0.05). 

2.10 Greenhouse Evaluation 

The ED was evaluated in a greenhouse, as described by Rocha et al. (2017) with modifications. Nicotiana 
benthamiana plant seedlings, 15 days post-germination, were transplanted into plastic pots containin 250 g of 
sterilized soil (60% ordinary soil, 30% sand and 10% commercial substrate) and grown for 5 days. The 
nematicide Aldicarb (280 mg kg-1 of soil) and distilled water were used as positive and negative controls, 
respectively. The ED solution was applied to the soil around each plant arriving at the final concentration of 50 
mg kg-1 of soil. One thousand and five hundred M. incognita J2 were added around each plant, 1-2 cm deep. 
Nicotiana benthamiana plants were then maintained under greenhouse conditions at temperatures varying from 
26 to 33 °C. After 45 days of the nematode infection, the plants were collected from the plastic pots and the roots 
removed and washed thoroughly in water, weighed, and submitted to the egg extraction process to obtain the 
reproduction factor (RF). Experiments were performed in triplicate. The data were submitted to analysis of 
variance ANOVA and the treatment of the means was compared using the Tukey test (p < 0.05).  
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menthofuran (Caboni et al., 2013). In other studies, several seed extracts have shown to exhibit activity against 
M. incognita, such as A. indica and Melia azedarach (Khurma & Singh, 1997).  

The compounds associated with nematicidal effect may vary from large proteins to small molecules. The dialysis 
provides an effective process that is able to separate compounds by molecular size or mass. The ID compounds 
are mostly larger than 3.5 kDa, suggesting that nematotoxic activity might be related to proteinaceous 
compounds (e.g., seeds storage proteins). These proteins are classified in different families (e.g., albumin, 
globulin, prolamin and glutelin) and they represent up to 40% of the seed’s dry weight (Erbaş, Tonguç, & Şanli, 
2016; Shewry, Napier, & Tatham, 1995). Moreover, they function as nutrient reserve for embryo development 
and may also be involved in plant defense against other organisms.  

The ED fraction contains compounds smaller than 3.5 kDa, like secondary metabolites (e.g., glycoalkaloid, 
phenolic compound) and peptides already identified in the Solanaceae family, as described by Tania et al. (2003). 
Several studies underlined the biological potential of secondary metabolites extracted from Solanaceae plants, 
such as indole alkaloids obtained from Tabernaemontana genus (Marinho, Simões, Barcellos, & Moura, 2016), 
and aporphine alkaloids obtained from Anonna crassiflora (Justino et al., 2020). 

Any potential nematotoxic compound must display thermostability in the prevalining environment, as it will be 
subject to temperature variations, which could otherwise compromise its properties and characteristics and, 
consequently, its nematotoxic activity. Results obtained in this study from ID and ED, showed that ID is slightly 
more thermostable than ED. Proteins maintain their three-dimensional structures due to diverse interactions 
between the amino acids, cofactors, the medium in which they are inserted, as well as the interaction with other 
protein compounds. This three-dimensional arrangement is often correlated with biological activity (Lehninger 
& Cox, 2014). Nevertheless, some of these interactions, such as hydrogen bonds and Van Der Waals, are 
particularly less stable than others, like covalent bonds, and are consequently more affected by physical factors, 
such as temperatures higher than that of the original biological medium (Lehninger & Cox, 2014). Based on the 
results obtained regarding thermostability, it was expected that the ID, which contains larger molecules, mainly 
proteins, would lose its nematicidal activity, due to protein denaturation. On the other hand, it was expected that 
secondary metabolites would maintain their nematicide activity, due to greater stability of its compounds, solely 
composed of covalent bonds (Hall, 2006; Newman, Cragg, & Snader, 2000; Newman, Cragg, & Snader, 2003). 
Contrary to what was initially expected, the results obtained here show a loss of activity for ED when tested at a 
100 μg mL-1 concentration in nematotoxic assay. This phenomenon possibly occurs due to the smaller amount of 
nematotoxic compounds effective toward M. incognita J2 present in this fraction. Conversely, ED maintained its 
nematicide potential when tested at a concentration of 300 μg mL-1. On the other hand, ID maintained its activity, 
which might be correlated to the thermoresistant plant proteins existent in this fraction (Silva et al., 2003). To 
date, based on a literature review, there are no reports of studies that corroborate the data obtained in the present 
study. 

Our results indicate that molecules present in ED, ID and ACE are possibly not toxic to non-targeted organisms. 
Information regarding the cytotoxicity evaluation represents a very important characterization of various 
biological materials that could be used, for instance, in the development of products for agriculture (Clardy & 
Walsh, 2004; Oksman-Caldentey & Inze, 2004). Enterolobin, a hemolytic protein isolated from Enterolobium 
contortisiliquum, demonstrated an antitryptic activity (trypsin and chymotrypsin) (Batista et al., 1996; de Sousa 
& Morhy, 1989). Other tests using plant compounds isolated from Crataegus pinnatifica (Chinese hawthorn) 
seeds identified cytotoxic activity in 5 metabolites (7S,8S)-4-[2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)- 
1(hydroxymethyl) ethoxy]-3, 5-dimethoxybenzaldehyde, (+)-balanophonin, erythro-guaiacylglycerol-β-coniferyl 
aldehyde ether and buddlenol A, inhibiting the proliferation of OPM2 and RPMI-8226 cells (Li et al., 2013). On 
the other hand, studies using extract, fractions, and isolated metabolites from C. ensiformis indicated their 
activity against M. incognita but did not present hemolytic activity (Rocha et al., 2017). Studies using protein 
extract of Caryocar brasiliense seeds demonstrated no hemolytic activity, despite its insecticidal potential 
against pest insects in in vitro tests (Costa, Franco, Migliolo, & Dias, 2015). Solanum capsicoides, a plant from 
the Solanaceae family, also showed no hemolytic effect (Petreanu et al., 2016). 

The results of bacteria and free-living nematodes assays suggest that ID, ED and ACE did not affect non-targeted 
organisms in the soil. Additionally, our results diverge from previous studies regarding the activity of 
proteinaceous extracts from S. stramonifolium seeds against E. coli and S. aureus, in which the ED, ID and ACE 
showed no activity against those bacteria, probably due the extraction used in our study. Herein, we focused on 
small metabolites, while the study performed by (Sarnthima & Khammuang, 2012) employed proteinaceous 
compounds. 



jas.ccsenet.org Journal of Agricultural Science Vol. 14, No. 7; 2022 

129 

Finally, the greenhouse evaluation showed that ED can be as effective as a positive control (Aldicarbe®) against 
J2, as it also demonstrates a reproduction factor (RF) lower than other Solanaceae plant extracts (Ferreira, 2018) 
and other synthetic nematicides, such as Rugby ® (RF 0.70) (Carvalho, 2017) and, possibly, without the 
side-effects to the environment and human health (Taniwiryono et al., 2009).  

5. Concluding Remarks 
Our study suggests that dialysates and extracts obtained from S. stramonifolium have biotechnological potential 
to be explored as a natural alternative to the nematicides currently used. For they associate not only the 
nematicidal activity obtained from low concentrations, but also other proprieties, such as thermostability and 
specify. 
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