British Journal of Mathematics & Computer Science

22(6): 1-7, 2017; Article no.BJM CS.34288
ISSN: 2231-0851

DT- optimality Criteriafor Second Order Rotatable Designs
Constructed Using Balanced | ncomplete Block Design

D.M.Mwan', M. K. Kosgei* and S. K. Rambaei*

'Department of Statistics and Computer Science, School of Bialagid Physical Sciences,
Moi University, P.O.Box 3900-30100, Eldoret, Kenya.

Authors’ contributions

This work was carried out in collaboration between all authorsh&wDMM designed the study, wrote the
protocol and wrote the first draft of the manuscript. AutidieK and SKR managed the computation of the
study and the literature searches. All authors read and apgat the final manuscript.

Article Information

DOI: 10.9734/BIJMCS/2017/34288
Editor(s):
(1) Kai-Long Hsiao, Taiwan Shoufu University, Taiwa
Reviewers:
(1) Hugo Cruz-Suérez, Benemérita Autonomous UniwedsiPuebla, Mexico.

(2) Louadj kahina, Laboratoire d’Informatique, de Mattaiques, et de Physique pour I'Agriculture etHeséts (LIMPAF) Bouira,
Algeria.

(3) Raad Yahya Qassim, Federal University of Rio de danBrazil.
Complete Peer review Historiattp://www.sciencedomain.org/review-history/19598

Received: 2%' May 2017
Accepted: 18 June 2017

| Original Research Article Published: 17" June 2017

Abstract

Experimenters have come to a realization that a designerdormp very well in terms of a particr
statistical characteristic and still perform poorytérms of a rival characteristic. Due to this studies have
narrowed down to the area of optimality criteria. Somenhesé criteria include the alphabetic optimality
criteria and compound optimality criteria. Compound optitpadriteria are those that combine two |or
more alphabetic optimality criteria in one particular gesin this paper two alphabetic optimality D- and
T- criteria are combined to obtain DT- compound optimadititeria for the existing second order
rotatable designs using Balanced Incomplete Block Designs.plitpose of this paper is to bring
balance between to statistical properties; parametenai&in and model discrimination. This will a
those researchers who are interested in more thamlésioed traits in one design. In this analysis, |we
note that the more homogenous the design is the more ofitimabmes.
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1 Introduction

In many life sciences, optimal designs are required irrotd cut on the cost of experimentation. An
experimenter is therefore advised to make the choice of igndes be used prior to carrying out any
experiment. Response surface methodology (RSM) is a colleatistatistical and mathematical techniques
that are useful in analyzing, developing, improving and adptitg processes. According to [1], RSM is
either used to explore response surfaces or to estittmatparameters of a model. [1] point out that the
technique of fitting a response surface is one widsbduo aid in the statistical analysis of experimental
work in which the response of a product depends on some unkiagtans on one or more controllable
variables. A particular selection of settings or fatémels at which observations are to be taken is called a
design. Designs are usually selected to satisfy somebkesariteria chosen by the experimenter.

Regression models in general. [1] gave an extensiveweof D-optimality for weighing problems and for
analysis of variance problems. In the early 1970s, the cdtedheory was crystallized in the papers by[2]
and [3]. The family of matrix mean8,with —o < p < 1 was introduced by [3]and is discussed in detail in
[4]. [5] discussed on the duality of optimal designs figcdmination and parameter estimation. T-optimal
design is a plan where the optimality is obtained by disoating between two or more models, one of
which is true. [6] introduced experimental designs for disicating between two models and also between
several models. [7]defined compound criterion as a weighteduproof the efficiencies that is to be
maximized and they introduced DT- and CD-optimality criterj8]combined D-optimality with T-
optimality to get DT-optimality which provides a spéeif balance between model discrimination and
parameter estimation. There are essentially two wlysthe construction of design criteria which
incorporate different purposes of the experimenter. Qupeoach is the construction of a new optimality
criterion by averaging several competitive design critekitgernatively one could try to maximize one
primary optimality criterion subject to constraints faesific minimum efficiencies of other criteria, [9]
and[10] constructed optimum designs of order two in tldieensions but the optimality criteria for their
designs were not identified. [11] gave the optimalityecia for the construction of designs [12-14] gave
practical examples and evaluated the efficiencies fooptenum designs respectively. In this paper, we
construct a new optimal second order rotatable design irdfmensions, evaluate its determinant and trace
criterion and combine them to obtain DT- criterion.

2 Conditionsfor Second Order Rotatability

Consider the model of second order response surface design
D= (x;,) tofit the model:
Yu = Op%xgy + gf:lgiixizu + 225‘{<j eijxiuxju + &y 1)

Where x;,, denotes the level of th&" factor (i =1,2,3,4) in the u* run (u=1,2,...,32) of the
experimentg, are uncorrected random errors with mean zero and vargrithe model is said to be SORD
if the variance of the estimate of the respopsés only a function of the distanc& = Y¥ , xZof the point
(x4, x5, x5 and x, )from the origin of the design.

The spherical variance function of the estimated secoddr gesponse surface is achieved if the design
points satisfy the following moments and non- singularityditions;

k
Z xZ, = Constant = NA,

u=1

k
Z xi, = Constant = 3N, for alli,

u=1
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YK xEx = constant = Nhy, i # j

And

k+2

)

3 Construction of the optimum Second Order Rotatable Design in Four

Dimensions

We add a factor to each set of points that formed the ywmrihts constructed by [10], we consider the

design,

m; =S (a,a,a,a)+ S(cy,0,0,0)+ S(cz0,0,0)

®)

The above set of 32 points form a second order rotatatdagement in four dimensions if the following

moment conditions holds:
ioox3z 1xm =16a% + 2c¢} + 2¢2 =322,
i. 32 1xm = 16a + 2cf + 2c3 = 96M,
ii. Y32, xf xh, =16a* = 32},

For i #j = 1,2,3 with all other sums and products including order four be@rg.z

The excess of

32 32
§ 4 _ § 2 .2
Xy = Xiu xju

u=1 u=1

Is given by,

EX[S (a,a,a,a) + S (¢1,0,0,0) + S(cz,0,0,0)] = X2, x5y, — 332, xh, %,
Therefore,

ct+ Cf— 16a2 =0

Let ¢? =xa%and c¢? =y a?

x4+ y2=16

X=,16—y? for0< y < 4

(4)

=0 (5)

(6)

We shall need to look at the behavior of the optimum valyeadfvarious points specifically, when= 3,

x = 2.645751311 hencec; = 1.626576562a and ¢, = 1.732050808a

Our point set now becomes

M:=S (a, a, a, a) + S (1.626576562a, 0, 0, 0) + S (1.7320508@B))0

The set of points in mforms a second order rotatable arrangement in four dimensipns 3. For the set
of points in m to form a second order rotatable design the non- sirgutaimditions given in (2) must be

satisfied.
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A, = 0.852859456a? and A, = 0.5a* )

Ay 0.5 Sk _ 4
A2 0727369251 k+2 6,

b4 - 069>%=067
23 23

The non- singularity conditions of rotatability of a secander design are satisfied [10] shows that the
expansion of;

Var(y,)= ﬁUZN_l[Z(k +2)B5 + ((k +2)B, — (k= 1))3kp, — 4kP, — 2 (B, — 1)Bok(k —
-2 1k (F— 1) ¢

Whereg = [B, (k +2)p, — k]~

k
(k+2)

And g, :i—g *
Now substituting the values given equations (5) and (@xaking k=4, we obtain;
Var ((y,) = 52.746098950% — 27.171987270%a"% — 86.2546523602%a>

To obtain the free parameter a, we optimize vgrhere
d
a—(var (¥4)) = 54.34397454a73 — 172.5093047a = 0
a

a=0.749177487
Now the variables;cand ¢ becomes;

c;= 1.218594541 and® 1.297613472
Hence from (1) the resulting design is then given by

M, = S (0.7491749, 0.7491749, 0.7491749, 0.7491749) + S (1.218594541, 0, 0, 0) + S
(1.29761347, 0, 0, 0). 9)

4 Classical Optimality Criteria

The ultimate purpose of any optimality criteria is@asure the largeness of a non- negative definite
information matrix, [4] The implications of the general principles that a reddendesign must meet are
well known from the existing literature. We now ondispecific criteria which submit themselves to these
principles and which enjoy a great popularity in practibeand T- optimality criteria are some of the most
prominent criteria in practice and are given by;

The Determinant criterid, (C) = (detc) 53

The trace criterion, Tg, (C) = i trace (c) (10)

Whereas is the number of parameters and c is the infornmtitix.
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The information matrix for the second order rotatable desidaur dimensions is subdivided into three sub-
matrices as given below;

1 A A A, A ] [1064 064 064 064 064
Ay BA, Ay A A 064 112 037 037 037
Bi=1\2, A 3\, A A |7| 064 037 112 037 037 11
A, A, A, 34, A 064 037 037 112 037
A, A, A, A, 34,| | 064 037 037 037 112
A, 0 0 O|f[oe4 0 0 O
0O A, 0 O 0O 064 O 0
B, = = 12
0 0 A, O 0 0O 064 O
0 0 0 4, 0O 0 0 o064
_/]4 0 0 0 0 O_ 037 0 0 0 0 0 1
0 A, O 0 0 O 0 037 O 0 0 0
g,=|0 0 4 0 0 0|0 0 03 0 0 O (13)
0O 0 0 4 O O 0 0 0 037 O 0
0 0 0 0 A O 0O 0 0O 0 037 O
o 0o 0 00 A |O O O O 0 037
4.1 Determinant criterion (D- optimality)
We determine the determinant of the information matrix Eor A, = 0.638943104 and A, =
0.374588743
1
9,(C) = (detc)s
1
[(m )l = (IB.11B211Bs1)5
=(0.2496 % 0.1678 * 0.0026)%
= (0.0001074)
= 0.544252783 (14)

4.2 Tracecriterion (T- optimality)

We determine the trace of the information matrix€ori, = 0.638943104 and A, = 0.374588743

0,(C) = % trace (C)
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Tr ) = i (tr (By) + tr (B,) + tr (Bs3)) wheres is the number of parameters of the design.

== (10.2600)

=0.684 (15)
5DT- Optimality

[8] introduced DT-optimality which is a combination of Dptimality and T-optimality. The formulae for
DT-optimality were given as;

07 (2) = (1 - k) log 84() + () loglm, (2)]. (16)

Wherep?T (£)is a convex combination of two design criteria, the firitedon is log\, (€), the logarithm of
that T-optimality and the second,[@)] is also the logarithm of D-Optimality.

Designs maximizing equation (16) are called DT-optimueh @re denoted bg* pr.

Whence 27 (¢) = (1 — k)Log0. 684 + (pi) log0.544252783
1

= (1-4) 0g0.684 +-log(0.544252783)

=0.494831694 — 0.070453157

= 0.424378536 17)

6 Concluding Remarks

There are two ways of constructing second order rotataligrdein four or more dimensions. One is by
using the formular’ = 2n + 4, where fis the number of points in the next dimension whereas neis th
number of design points in the current dimension and the otieeis by adding a factor to the sets of points
of the design to extend it to the next dimension. [10] cons&u20 points specific second order rotatable
design in three factors and extended it to 44 points in femtors using the first method. In our case, we
extend the same design of 20 points second order rotataldm deshree factors to 32 points second order
rotatable design in four factors using the second methodal¥deevaluate the design's D-and T- optimality
criteria. The study concludes by combining D- and T-opitnab get DT-(compound optimality). The
design under consideration is said to be better than the A pgtimal second order rotatable design in
four factors constructed by [10] since the number of pan¢ economical as compared to the other. The D-,
T-, and DT- optimality criteria are compared and thatleletermines the optimality criteria, whence the 32
points second order rotatable design is DT-optimum. Again tHgsimaf the two alphabetic criteria and the
compound criterion above show that the more the homogenowsiga éethe more optimal it becomes, this
is the result obtained above for the D- criterion the evalas 0.544232783, the T- criterion become 0.684
but the combination of the two gave a more homogenous valusgetadzero 0.4243785. This clearly
brought a balance between parameter estimation and risdeirgnation.
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