British Journal of Mathematics & Computer Science

22(6): 1-14, 2017; Article no.BJM CS.33762
ISSN: 2231-0851

Mixed Convection and Radiative Heat Transfer of MHD
Casson Fluid Flow by a Permeable Stretching Sheet with
Variable Thermal Conductivity and Lying in Porous Medium

Hassan Wagas', Sajjad Hussain*', Rabia Naseem®, Amna Mariam*
and Shamila K halid*

!Department of Mathematics, Govt. College University &laibad (Layyah Campus), Pakistan.

Authors’ contributions

This work was carried out in collaboration between all authéwghor HW managed the analysis of the
study, performed the statistical analysis. Author SH designestidg and managed the technical aspects.
Author RN obtained the numerical solution of problem. Autidmote the first draft of the study. Author
SK managed the literature review. All authors read and apprtwedinal manuscript.

Article Information

DOI: 10.9734/BIMCS/2017/33762
Editor(s):
(1) Dr. M. Subhas Abel, Department of Mathemat@s|barga University, India.
Reviewers:
(1) Aleksandar Boti¢, University of Ni§, Serbia.
(2) Farhad Ali, City University of Science and Infornuat Technology, Peshawar Pakistan.
Complete Peer review Historiattp://www.sciencedomain.org/review-history/19614

Received: 28 April 2017

— _ Accepted: 1% June 2017
| Original Research Article Published: 19" June 2017

Abstract

This work investigates the mixed convection radiative heatster of electrically conducting Casspn
fluids. The fluid flows past a permeable stretching shaaglin the porous medium. The heat transfer
involves variable thermal conductivity and convective bowndanditions. The formulation of the
problem is primarily in the form of the non-linear palrtdifferential equations. These governipg
equations are transformed to their ordinary differefitiah by employing similarity transformation. The
resulting equations are then solved numerically by dakBiung-Kutta method. Computations have been
made for some representative values of the pertinent pemante elaborate the physical behavior| of
flow and thermal characteristics.
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1 Introduction

The study of magneto hydrodynamic (MHD) flow of niewtonian fluids in a porous medium has attracted
many researchers due to its application in the optimizati@olidification processes of metals, alloys, the
geothermal sources investigation and nuclear fuel défe@gment. Magneto hydrodynamics concepts are
utilized by the engineers in the design of heat exchangeraps, thermal protection, in space vehicle
propulsion, control and re-entry, and in creating novel payeeerating systems. The purification of molten
metals from non-metallic inclusions through the applicatibmagnetic field is another important feature of
MHD. All such applications of MHD give rise to investigathe problems which involves the magneto
hydrodynamic effects. The theoretical study of twmeksional non-Newtonian incompressible fluid flow
over a surface with stretching or shrinking properties dleesrt the significant attention in the past few years
due to its wide applications in engineering fields as aglin the industry. Some applications include the
production of toothpaste, shampoo, custard solution, blood tregtgiass fiber production and design of
the plastic films. The various non-Newtonian fluids are pelaer fluids, micro polar fluids, viscoelastic
fluids, Jeffrey fluid, Rivlin- Ericksen fluids, Cassonuifis, Walter's liquid B fluids etc. Although various
types of non-Newtonian fluid models are proposed to expllag different behavior, one of the most
important types of non-Newtonian fluids is Casson fluide Tdasson fluid is a plastic fluid, which yields
shear stress in constitutive equations. Some of the exsrapl@asson fluid model are jelly, soup, honey,
tomato sauce, concentrated fruit juices, drilling operatiéoed processing, metallurgy, paints, coal in
water, synthetic lubricants, manufacturing of pharmaceupcoducts, synovial fluids, sewage sludge and
many others. Human blood is also considered as Casson fliddeeof the presence of several substances
like protein, fibrinogen and globin in aqueous base plasntiaei blood. Human red blood cells form a chain
like structure, known as aggregates or rouleaux. Cassomtfbpuced this model to predict the flow
behaviour of pigment oil suspensions of the printing ink tyRecently, Sulochana et al. [2] discussed the
influence of non- linear thermal radiation on MHD 3-dimeng@asson fluid flow with viscous dissipation.
Nadeem et al. [3] examined the magnetohydrodynamic (MHD) boyalger flow of a Casson fluid over
an exponentially penetrable shrinking sheet. Raju edpkt{idied the effects of heat and mass transfer on
MHD Casson fluid flow past an exponentially permeabletsiing sheet. Later on, several researchers
studied Casson fluid pertaining to different flow situasioithe unsteady boundary layer flow and heat
transfer of a Casson fluid over a moving flat platehveitparallel free stream was studied by Mustafa et al.
[5]. The exact solution for boundary layer flow of Cassoidflwer a permeable stretching/shrinking sheet
with and without external magnetic field was discussed byt8ttzaryya et al. [6-7]. The Casson fluid has
an infinite viscosity at zero rate of shear and a yééless below which no flow occurs and a zero velocity at
an infinite shear rate [8-9]. Nadeem [10] has studied MH®v of a Casson fluid over an
exponentially/linearly shrinking sheet. Animasaun [113 kaudied MHD dissipative Casson fluid flow with
suction and nth order of chemical reaction. Nadeem [12]discussed on Casson fluid past a linearly
stretching sheet with convective boundary condition. Akbar B3] studied Metachronal beating of cilia
under the influence of Casson fluid and magnetic fieltkbak [14-15] has investigated the magnetic field
effects on Eyring- Powell/Casson fluid flow toward atthing sheet, asymmetric channel and Plumb Duct.
Benazir et al. [16] have studied unsteady MHD Casson flaid over a vertical cone and flat plate with
non-uniform heat source/sink.

Hassan et al. [17] studied chemical diffusion and radidieat transfer effects on magnetohydrodynamics
stagnation point flow of Casson fluid over a porous shrinking sRestently, Hassan et al. and Nadeem et
al. [18-19] investigated the unsteady magnetic hydroayné@MHD) stagnation point flow of Casson fluids
with radiation. Nadeem et al. [20] presentkd Atangana and Baleané\B) fractional derivative idea for
the first time to study the free convection flow of a gmtized Casson fluid due to the combined
gradients of temperature and concentratiadeem et al. [21] worked on the Atangana and BaleaB) (A
in their recent work and introduced a new version of foaeti derivatives which uses the generalized
Mittag-Leffler function as the non-singular and non-localnkérand accepts all properties of fractional
derivatives. Farhad et al. [22bnsidered the effects of magnetohydrodynamics on the bloadvihen
blood is represented as a Casson fluid, along with magreaticles in a horizontal cylinder.
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The flow through porous media has a bearing in the progress of sempltations, sisuch as chen
reactors, geology, combustion, drying and liquid posite molding, and biologicapplications Flow
through a porous wall with convective acceleration studied by Yamamoto and Yoshida [23]. The ste
flow of a viscous fluid through a saturated porous mediuringé thickness, impermeatble and thetyn
insulated bottom and the other side being stress freecaistant temperature was studdied by Mdin
and Pattabhiramacharyulu [24]. Chamkha [25] investigated MHB &@nvection from a vertical pli
embedded in a thermally stratified porous medium. MHReghiconvection from a vertical plate embed
in a porous medium with a convective boundary ction was investigated by Makinde and Aziz [Z
Makinde and Mhone [27] considered the temporal stability aisafgs hydromagnetic flow in a chant
filled with a saturated porous medit The hydromagnetic mixed convection flow of an inqoassible
viscots electrically conducting fluid and mass transfer oveerdical porous plate with c:onstant heat
embedded in a porous medium is investigated by Makinde

Hayat et al. [29] studied theffects of variable thermal conductivity on the mixed conxion flow over
porous stretching surfader Newtonian fluids, without radiation. We made a compnshase mathematic
and computational analysis of this problem to examinelthe df the Cassn fluids through porous mediu
and radiation.

2 Mathematical M odel

Consider the mixed convective, steady,-dimensional, stagnation point flow of an incompilglesCassor
fluid over a porous stretching sheet locatey = 0. The flow being confined in the regigr» 0. A magnetic

field of uniform strengthBO is applied perpendicular to the surface. The magnetic blds number i
taken to be small enough so that the induced magnetic field caeglected in comparisson to the iapl
magnetic field.

L

v

Fig. 1. Geometry of flow

The temperature of the fluid i$ and u, v are velocity components. The thermal conductivibd
temperature are linearly proportional but other physicahtifies are constal

The stress tensor for an isotropic and incompressibledfahe Casson flui

+
o oo

I, = 1)

ij +
2 M elj,n'<n;
21T,
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Here, 7; is the stress tensof stand for(i,j)th component of the deformation ratd, denotes critical
value, p, is the yield stress of the fluifz is plastic dynamic viscosity of the non-Newtonituid, and

So, if a shear stress less than the yield stremgpked to the fluid, it behaves like a solid, wéwes if a shear
stress greater than yield stress is applied, litssta move.

Under the above assumptions, the governing equatibmhe conservation of mass, momentum, energy in
the presence of magnetic field are

Jdu ov
+

Z+% =, 2
ox oy @
ou du 1) 0%u oB> v
U—=+v— = | 14— v + g5 (T- T)—— 3)
ox oy ( ﬂj oy’ P K
oT  oT 0°T 0q
— +yV—)=k— -—— 4
pc, (u Fw Vay) 0y oy 4

The appropriate boundary conditions for the velocamponents and temperature are given by

u=u,(X = cx v=y = const - (((;—;): 6, T- J atyo

5)
U—»O,T—»Tm as y- o
Using the following similarity variable:
. c T-T
u=cxf (), v=—uc f(n),/7=\ﬁ Y, 0(r7) = ——== (6)
v T -1,

Wherey = X\/E: f(17) is the stream function withl = ‘2_‘// andv = _%_‘// :
Y X

The continuity Eq. (2) is automatically satisfied.

Where ¢ is constant, andT (X)=T + D)(H(ﬂ) at7=0 and variable thermal conductivity,

k =Kk, [L+&0], k. is the fluid stream conductivity andis defined ast =% , the radiation term
40" aT* .. , —_— :
q, = —? 5 , B’ is as mean absorption coefficient, Stefan Boltzmann constant in the thermal
y

radiation, With the assumption that' is expanded in Taylor series abautand neglecting higher order
terms to get

dg, 40 T o°T .
dy 35 oY

T*=4TT-3T and —



Wagas et al.; BJMCS, 22(6): 1-14, 2017; ArticleBiMCS.33762

Substituting the above appropriate relation, the 8] to (5) give the following non-linear ordinary
differential equations.

(1+%jf"’+ff"—f'2—Mf'+/]0—Kf':0 ®

(1+£0+R)F = P[a'6 f - 16'] )
The corresponding boundary conditions are

f(0)=S, f(0)=18(0)=-y [1-6 (0)], aty= ( .
fl —>0,0—> oaSI7—>OO,

0B, Gr, ., _980-T)X

is magnetic parameter] = , Gr

RE * v?

u, X . HC, h v .
number,ReX = js the local Renold numbeF,’r :K the Prandtl number}/:E — is the Biot
1 C

2 U -V,
h is Casson fluid parametel =—— is the porosity parameterSZ—O is the
P, cKy veu
160 T®

suction/injection paramet,erR:Tk: is the radiation parameter, Roseland mean absearpti

is the local Grashof

where M =

number, 5 =

coefficient isﬁ , which measure the ratio of momentum diffusivibythe thermal diffusivity. The prime
denotes the differentiation with respectrto

3 Results and Discussion

The system of coupled equations (8) to (10) islgiglon-linear and involves higher order derivativEsese
equations are difficult to yield analytical solutidn order to obtain a numerical solution of thelglem, the
order of the derivatives of these equations is ¢ceduo first order.

welet, p=f,q=f", g=4,
q'=Mp+ g + fa-A6+ K (11)
(1+e6+R)g= P[a'0 p- fg| (12)
And the boundary conditions become:

P(0)=19(0)=-y(1-6(9)
p(e=) =0,6() =0

(13)
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In order to examine the effects of influential paeders for the flow problem, the set of non-lineedinary
differential equations (11 to 13) is solved numalicby using appropriate codes on computationéihsoe
Mathematica. The physical insight of the problemegealed through graphs of velocity and tempeeatur
functions.

The Figs. 2 and 3 respectively display the efféctuztion injection parameter on velocity . It is noticed
that velocity decreases in magnitude with incréaseiction and opposite behavior is seen for iigactThe
effect of Prandtl number on velocitf * and temperature functiofl(17) is demonstrated respectively in the
Figs. 4 and 5. The Prandtl number has decreasfagtefn both of the physical quantities. The curfeeghe
velocity f 'and temperature functiof(7) as presented respectively in Figs. 6 and 7, tetitte the

impact of the magnetic field. It is seen that ire® in the magnetic field parameldrcauses decrease in
flow velocity but an increase in the temperatursriiution.

Fig. 8 shows that the velocit§ ' isreduced in magnitude with increase in Casson paearge.

The curves in the Figs. 9 and 10 respectively sugiche effects of parametdron function f ' and@(n7) .
It is noticed that velocity increases but tempeetiistribution decreases with increase in the evaifiA
.The increase in the value of the porosity paraméteauses decrease in horizontal velodit\as shown in
Fig. 11.

The Figs. 12 and 13 respectively demonstrate tfieeince of parameteg on horizontal velocityf ' and
temperatured(17) . The parametee has small increasing effect oh' but it has significant increasing
effect on@(#7) . Figs. 14 and 15 respectively illustrate the imdche suction and injection phenomena on
temperature distribution. It is observed tig7) decrease with increase in suctipg> Q) but opposite
result is seen for injectiofs < 0) . The influence of Biot numbey on temperature functiod(7) is
displayed in Fig. 16. The temperature distribuiizerease iny .
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Fig. 2. Theplot for curvesof f'under thesuction parameter (s> 0) when
M =0.51=0.3y=18=1,K=01P=0.7
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Fig. 3. Theplot for curvesof f'under theinjection parameter s(s<0) when
M=054A=03y=18=1,K=01P=0.7
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Fig. 4. Theplot for curvesof f'under the effect of Prandtl number when
s=1,M=054=03y=1£=1,K=01
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Fig. 5. Theplot for curvesof @ under the effect of Prandtl number P, when
s=1,M=054=03y= 16=1,K=01
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Fig. 6. Theplot for curvesof f'under the magnetic parameter M when
s=1,A=0.3y=18=1,K=01P=07
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Fig. 7. Theplot for curvesof 8(17) under the magnetic parameter M when
s=1,1=0.3y=183=1,K=01P=07
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Fig. 8. Theplot for curvesof f'under theeffect of Casson parameter 8 when
s=1,M=0.51= 0.3y= 1K=0.1, P=0.7
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Fig. 9. Theplot for curvesof f'under the effect of parameter A when
s=1,M=05y=1£=1,K=01P=07
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Fig. 10. The plot for curvesof &(17) under the effect of parameter A when
s=1,M=05y=1F=1¢=0.2,K=01P=07

10

K=0,15, 3,45
08 1

06 4

04 1

02 1

00 I ! !
00 05 10 15 20 25 30

n

Fig. 11. Theplot for curvesof f'under theeffect of porosity parameter K when
s=1,A1=0.3M=0.5y= 14=16=0.2,K=01P=07
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Fig. 12. Theplot for curvesof f'under the parameter £ (£ > 0) when
s=1,1=0.3,M=0.5y= 16=1,K=01P=07
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Fig. 13. The plot for curvesof &(77) under the parameter £ (£ < 0)when
s=1,A1=0.3,M = 0.5y= 14 =1,,K=01P=0.7

Fig. 14. The plot for curvesof @(17) under the effect of suction parameter s (s> 0)when
A=03M=05)y=16=1¢=0.2,K=01P=07

10



Wagas et al.; BIMCS, 22(6): 1-14, 2017; ArticleBiMCS.33762

08 T T
s=0,-05,-1,-15

Fig. 15. The plot for curvesof &(77) under the effect of injection parameter s (s< 0)when
A=03M =05y=18=1=0.2,K=01P=0.7
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Fig. 16. The plot for curvesof &(77) under the effect of Biot parameter ) when
s=1,A=0.3M=054=1¢=0.2,K=01P=07

4 Conclusion

The main findings of this work are summarized dves:

The horizontal velocityf ' decreases in magnitude with increase in suctichomposite behavior
is seen for injection.
The Prandtl number has decreasing effect on vglotit and temperature function.

The magnetic field parametbt causes decrease in flow velocity but an increaskd temperature
distribution.

The velocity f ' reduces in magnitude with increase in Casson pdearge.

The velocity increases but temperature distributiecreases with increase in the valuedof
The increase in the value of the porosity parantéteauses decrease in horizontal velodity

The paramete€ has small increasing effect oh' but it has significant increasing effect on
o) -

11
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« It is observed that(/7) decrease with increase in suctipg@ > Q) but opposite result is seen for
injection (s < 0) .
*  The temperature distribution increaseyin
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