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Abstract 
 

The focus of the present paper is to obtain the sharp upper bounds of )(2 αa and )(3 αa for functions 

belonging to the Bazilevic class ),,,( φγα nB  associated with modified sigmoid function. The connection 

of these bounds to the celebrated Fekete-Szego functional )()( 2
23 αµα aa −  follows as simple consequence.  
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1 Introduction 
 
Let A denote the class of all functions of the form 
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which are analytic in the open unit disk }{ 1||; <= zzD and normalized by  

 

.01)0()0( 1 =−= ff  Also, let S denote the subclass of A which are normalized and univalent in D.  
 
In 1983, Sălăgean [1] introduced and studied the following differential operator: 
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From equation (1.1), we can write that 
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Expanding equation (1.3) binomially, then 
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where 0>α  that is,α is real. Using (1.2) and (1.4), then  
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is obtained. Now, consider the following function: 
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where 0>α (α  are real), Pp∈ and .*Ψ∈g  The genesis of the study of the function given above in (1.6) 

is the discovery in 1955 by a Russian Mathematician called Bazilevic [2]. The family of functions (1.6) 
became known as Bazilevic functions and is usually denoted by ).,( εαB  Very little is known about this 

family of functions defined in (1.6), except that, he Bazilevic showed that each function ),( εαBf ∈  is 

univalent inD . However, by simplifying (1.6) it is quite possible to understand and investigate the family 
better. It should be noted that with special choices of parameters εα ,  and the function )(zg , the family 

),( εαB cracks down to some well-known subclasses of univalent functions (see [3] for details). For 

instance, if we let 0=ε then (1.6) immediately yields 
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By differentiating equation (1.7) we have 
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or equivalently 
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The subclass of Bazilevic functions satisfying equation (1.8) are called Bazilevic functions of type α  and 
are denoted by )(αB  (see Singh, [4]). In 1973, Noonan [5] gave a plausible description of functions of the 

class )(αB as those functions in Ψ for which each 1>r , and the tangent to the curve 

{ }πθε αθ
α 20,)()( <≤= irefrU  never turns back on itself as much as π  radian. If 1=α , the class 

)(αB  reduces to the family of close-to-convex functions; that is, 
 

.0
)(

Dz
zg

fz
e ∈>







 ′

ℜ                                                      (1.10) 

 
If we decide to choose )()( zfzg =  in inequality (1.10), we have 
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This implies that )(zf  is starlike. Furthermore, if one replaces )(zf  by )(zfz ′ , then 
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This shows that )(zf  is convex. Moreover, if zzg =)(  in inequality (1.9), then the family of )(1 αB of 

functions satisfying  
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is obtained.  
 
In 1992, Abdulhalim [6] introduced a generalization of (1.11) such that 
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where the parameter 0>α  and the operator nD is the famous Sălăgean derivative operator [1] defined in 

(1.2). Further in 1994, Opoola [7] studied a more generalization of (1.12) and denoted it by )(γα
nT  

(Bazilevic class of order gamma) such that 
 

γα

α

>








ℜ
z

zfD
e

n )(
, .,0,0 Dz∈>≥ αγ                                       (1.13) 

 
Recently, a little modification was made to (1.13) such that 
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Here, it is noted that  
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where for convenience we denote the class of functions in (1.15) by ),( nB α . 
 
Now, the theory of both the analytic functions and special functions (such as sigmoid function) are of great 
importance in addressing many physical problems such as in heat conduction and aerodynamic to mention 
but few.  
 
It is generally believed that activation function is an information process that is inspired by the way nervous 
system like brain, process information. It is composed of large number of highly interconnected processing 
element (neurons) working to solve a specific assignment. This function works in similar way the brain does. 
The human brain can be regarded as an information-processing entity. It receives information from the 
external environment through the sense and processes them to form internal models of external phenomena. 
In particular, the brain is capable of redressing these models to suit new situations and then make reliable 
decisions.  
 
The most widely used sigmoid function is the logistic activation function which has a lower bound of zero 
(0) and upper bound of one (1). It means that the function value (or the output) range is [0, 1]. 
 
Many sigmoid functions have power series expansion which alternate in sign while some have inverse with 
hypergeometric series expansion. They can be evaluated differently especially by truncated series expansion. 
The logistic sigmoid function is defined as  
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and has the following properties: 
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(i) It outputs real number between 0 and 1 
(ii)  It maps a very large input domain to a small range of outputs 
(iii)  It never loses information because it is a one-to-one function 
(iv) It increases monotonically.  

 
In view of the above properties sigmoid function is highly useful in geometric Function Theory (See [8,9] 
for more detail). 
 
However, the investigation of Fadipe-Joseph et al. [8] on the logistic sigmoid function has stirred the interest 
of both young and old researchers in the field of geometric function theory with several interesting results 
authenticated diversely in literatures. Motivated by the work of Fadipe-Joseph et al. [8], Oladipo and 
Gbolagade [9], the author here wishes to investigate the coefficient bounds for certain class of analytic 
functions involving modified sigmoid function in the unit disk. 
 

2 Coefficient Bounds 
 
Let P (Caratheodory functions) be the family of all functions p analytic in D for which ,1)0( =p

{ } 0)( >ℜ zp  and 
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in the unit disk D (see [10]).  
 

Lemma 2.1 [11]: Let Pp∈ . Then ....,4,3,2,1,2|| =≤ kpk  Equality is attained by the moebius 

function  
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Lemma 2.2[8,12]: Let g be sigmoid function of the form (1.16). Then, let )(2)( zgz =φ  such that 
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Then Pz ∈)(φ , |z|<1 where P is the class of Caratheodory functions and )(zφ denotes the celebrated 

modified sigmoid function.  

  

 
Lemma 2.3 [8,12]: Let 
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Then, 2)( <zφ . 

 

Now, let 
α)(zf of the form (1.4) belong to ),( nB α . Then, for }0{;10;0 0 ∪=∈≤≤> NNnγα  
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and 11 ≤<≤− AB  
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Hence, by the definition of subordination, it follows that ),,,()( φγαα nBzf ∈ if and only if 
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where )(2)( zgz =φ and )(zg  is as defined in (1.16). 

 
Next is the coefficient bounds for functions in the Bazilevic class ),,,( φγα nB . 
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Proof: Let ),,,()( φγαα nBzf ∈ . Then, there exists Pzp ∈)(,φ (class of caratheodory functions) such 

that 
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Equating the coefficient of the like powers of z, z2, z3, z4 and z5 in (2.8) above, then 
 

n

n pp
a

)1(2

)]12(2[
)( 11

2 +
−−

=
α

γαα                                           (2.9) 



 
 
 

Olusegun; ARJOM, 5(3): 1-10, 2017; Article no.ARJOM.33818 
 
 
 

7 
 
 

n

n p
a

)2(

)1(
)( 2

3 +
−

=
α

γαα                                          (2.10) 

 

n

n pp
a

)3(24

)]124(24[
)( 33

4 +
−−

=
α

γαα                                        (2.11) 

 

n

n p
a

)4(

)1(
)( 4

5 +
−

=
α

γαα                                          (2.12) 

 

n

n pp
a

)5(240

)]1240(240[
)( 55

6 +
−−

=
α
γαα                                        (2.13) 

 
Applying Lemma 2.1, then we obtain the desired results. This ends the proof of Theorem 2.4. 
 

Corollary 2.5: Suppose that ),,,1()( φγα nBzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα
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Corollary 2.6: Suppose that ),,0,1()( φγα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα  
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Corollary 2.7: Suppose that ),,1,1()( φγα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα  
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Corollary 2.8: Suppose that ),0,0,1()( φα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα  

2)1(2 ≤a , 2)1(3 ≤a , 2)1(4 ≤a ,  2)1(5 ≤a ,  2)1(6 ≤a  

 
and in general 
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In the recent time, Fekete-Szego inequality has been one of the fascinating problems beckoning the attention 
of both young and old researchers in the field of complex analysis. They have succeeded not only in 
obtaining sharp bounds for the first two initial coefficients |a2| and |a3| for various subclasses of S, but also in 

establishing a close link or connection between these coefficients and the functional 2
23 aa µ−  (see [13, 

12, 14] among others). Here, the author uses the values of a2 and a3 obtained in (2.9) and (2.10) respectively, 

to prove the Fekete-Szego result for the function class ),,,( φγα nB  involving modified sigmoid function. 

 

Theorem 2.9: Suppose that ),,,()( φγαα nBzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα .  
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Proof: Using (2.9) and (2.10) with Lemma 2.1, the proof is immediate. 
 

Corollary 2.10: Let ),,,1()( φγα nBzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα   
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Corollary 2.11: Let ),,1,1()( φγα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα   
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Corollary 2.12: Let ),,0,1()( φγα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα   
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Corollary 2.13: Let ),0,0,1()( φα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα   
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Corollary 2.14: Let ),0,1,1()( φα Bzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα   
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Final Remark: 
 
If µ=1 in corollary 2.13 and corollary 2.14 respectively, then 
 

.2)1()1( 2
23 ≤− aa µ  
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and 
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For some results on Fekete-Szego problem see [13,14] among others. 
 

Theorem 2.15: Suppose that ),,,()( φγαα nBzf ∈ . Then, for 0;10;0 Nn∈≤≤> γα .  
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Proof: Using (2.9), (2.10) and (2.11) with Lemma 2.1, the proof is immediate. 
 

3 Conclusion 
 
By substituting zero (0) for the value of γ  in all the results obtained in this paper, then we would be having 
the results associated with the class p(z) of Caratheodory functions defined in (2.1) alone while by letting 

1=γ , then all the results obtained would be associated with the modified sigmoid function )(zφ defined in 
(2.7) alone. 
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