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Abstract

A new distribution called the exponentiated generalized Lindley is proposed and studied. This
distribution includes as special cases the Lindley and exponentiated Lindley distributions. We
study the main properties of this distribution, with special emphasis on its moments and some
characteristics related to reliability studies. The estimation of the model parameters using
the methods of moments and maximum likelihood is also discussed. The flexibility of this
distribution is illustrated via an application to a real data set.
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1 Introduction

The probability distributions have been extensively used to describe real world phenomena. Due
to the usefulness of probability distributions, their theory is widely studied and new distributions
are developed. For example, [1] proposed the Weibull-Pareto distribution. [2] introduced the beta-
Dagum distribution. [3] proposed the Mc-Dagum distribution and discussed its various properties.
[4] introduced and studied the exponentiated Lindley distribution. [5] defined a five-parameter
beta Burr XII distribution and discussed its various properties. [6] introduced the Kumaraswamy
generalized gamma distribution. [7] studied the gamma-exponentiated Weibull distribution and [8]
studied the beta modified Weibull distribution.

The Lindley distribution is a popular life time probability distribution that has been used for
modeling in actuarial sciences, engineering and biological studies.

In this work, we propose a new distribution that extends the Lindley distribution. Some of the
main structural properties of this distribution are derived. The estimation of parameters using the
methods of moments and maximum likelihood is also discussed. The flexibility of this distribution
is illustrated via an application to a real data set.

The new distribution will serve as an alternative model to other Models available in the literature
for modeling positive real data in many areas.

The article is organized as follows. In Section 2, the exponentiated generalized Lindley distribution is
defined and some special sub-models are discussed. The moments and moment generating function
are derived in Section 3. Characterizations of the new model are presented in Section 4. The
estimation of the model parameters using the methods of moments and maximum likelihood is
discussed in Section 5. Finally, in Section 6 an application to a real data set is reported.

2 The Model

[9] introduced a one-parameter distribution, known as Lindley distribution, given by its probability
density function (PDF)

g (x;λ) =
λ2

λ+ 1
(1 + x)e−λx, (2.1)

for x > 0 and λ > 0. The corresponding cumulative distribution function (CDF) is

G (x;λ) = 1−
(
1 +

λx

λ+ 1

)
e−λx. (2.2)

Let G(x) be the CDF of any random variable X. The CDF of a generalized class of distributions,
defined by [10], is given by

F (x;α, β) = {1− [1−G(x)]α}β , (2.3)
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where α > 0 and β > 0 are two additional shape parameters. The corresponding PDF for (2.3) is

given by

f (x;α, β) = αβg(x) [1−G(x)]α−1 {1− [1−G(x)]α}β−1 . (2.4)

Replacing (2.2) in (2.3), we obtain a new distribution, called exponentiated generalized Lindley
(EGL), with CDF given by

F (x;α, β, λ) =

[
1−

((
1 +

λx

λ+ 1

)
e−λx

)α]β

. (2.5)

The PDF corresponding to F (x;α, β, λ) is

f (x;α, β, λ) =
αβλ2

λ+ 1
(1 + x)

(
1 +

λx

λ+ 1

)α−1 [
1−

((
1 +

λx

λ+ 1

)
e−λx

)α]β−1

e−αλx. (2.6)

Fig. 1 shows the graphs of PDF of EGL distribution for various values of the parameters α, β and
λ.

Fig. 1. Graphs of the PDF of the EGL distribution for different values of the
parameters

2.1 Sub-models

Sub-models of EGL distribution for selected values of the parameters are presented in this subsection.

1. When α = 1, the EGL distribution is the exponentiated Lindley (EL) distribution, [4], with
the density given by

f (x;β, λ) =
βλ2

λ+ 1
(1 + x)

[
1−

(
1 +

λx

λ+ 1

)
e−λx

]β−1

e−λx; (2.7)

2. If β = 1, we have the generalized Lindley distribution with the density given by

f (x;α, λ) =
αλ2

λ+ 1
(1 + x)

(
1 +

λx

λ+ 1

)α−1

e−αλx; (2.8)
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3 Properties of the Model

3.1 Expansions for the cumulative and density functions

For any real non-integer β > 0, [11] defined the power series

(1− z)β = β

∞∑
j=0

(−1)jΓ(β)zj

Γ(β − j + 1)j!
, (3.1)

where |z| < 1. Using the series representation (3.1) in Equation 2.5, we can write

F (x;α, β, λ) = β
∞∑
j=0

(−1)jΓ(β)

Γ(β − j + 1)j!

(
λ+ 1 + λx

λ+ 1
.e−λx

)αj

. (3.2)

If α > 0 is an integer and β is a real non-integer, we can write (3.2), through the known Binomial
Theorem, as

F (x;α, β, λ) = β

∞∑
j=0

αj∑
k=0

(−1)jΓ(β) (αj)!

Γ(β − j + 1) (αj − k)!j!k!

(
λ

λ+ 1

)k

xke−αλjx. (3.3)

Using again the series (3.1), we can express the PDF of EGL distribution as

f (x;α, β, λ) =
αβλ2

λ+ 1
(x+ 1)

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!

(
λ+ 1 + λx

λ+ 1

)α(j+1)−1

e−αλ(j+1)x. (3.4)

If α is an integer and β is a real non-integer, we can write (3.4), also through the known Binomial
Theorem, as

f (x;α, β, λ) =
αβλ2

λ+ 1
(x+ 1)

∞∑
j=0

α(j+1)−1∑
k=0

(−1)jΓ(β) [α(j + 1)− 1]!

Γ(β − j)[α(j + 1)− k − 1]!j!k!

(
λ

λ+ 1

)k

xke−αλ(j+1)x. (3.5)

For β integer, the index j in the previous sums stops at β.

3.2 Moments

Lemma 1. (Equation (2.3.6.9), [12]). If 0 < Re(a), 0 < Re(p) and | arg(z) |< π then∫ ∞

0

xa−1 (x+ z)−ρ exp (−px) dx = Γ (a) za−ρΨ(a, a+ 1− ρ; pz) , (3.6)

where Ψ(a, b;x) is the Gordon function defined by

Ψ(a, b;x) =
Γ(b− 1)

Γ (a)
x1−b

∞∑
k=0

(a− b+ 1)kx
k

(2− b)kk!
+

Γ(1− b)

Γ (a− b+ 1)

∞∑
k=0

(a)kx
k

(b)kk!
(3.7)

and (x)j = (x) (x+ 1) . . . (x+ j − 1) denotes the Pochhammer symbol.

Lemma 2. The n-th raw moment of the EGL distribution, as in (3.4), for β > 0 real non-integer,
is given by

E (Xn) = αβλn!

(
λ+ 1

λ

)n ∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(n+ 1, n+ α(j + 1) + 1;α(j + 1)(λ+ 1))

+ [(n+ 1)(λ+ 1)/λ]Ψ (n+ 2, n+ α(j + 1) + 2;α(j + 1)(λ+ 1))}. (3.8)

If β > 0 is an integer, the index j stops at β.
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Proof. The n-th raw moment of the EGL distribution, as in (3.4), is given by

E (Xn) =

∫ ∞

0

xnf(x;α, β, λ)dx

=
αβλ2

λ+ 1

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!

∫ ∞

0

xn(x+ 1)

(
λ+ 1 + λx

λ+ 1

)α(j+1)−1

e−αλ(j+1)xdx. (3.9)

It follows from Lemma 1 that the n-th raw moment of the EGL distribution is given by

E (Xn) = αβλn!

(
λ+ 1

λ

)n ∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(n+ 1, n+ α(j + 1) + 1;α(j + 1)(λ+ 1))

+ [(n+ 1)(λ+ 1)/λ]Ψ (n+ 2, n+ α(j + 1) + 2;α(j + 1)(λ+ 1))}. (3.10)

3.3 Moment generating function

Lemma 3. The moment generating function of EGL distribution is given by

M (t) = αβλ

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(1, α(j + 1) + 1; [αλ(j + 1)− t](λ+ 1)/λ)

+ [(λ+ 1)/λ]Ψ (2, α(j + 1) + 2; [αλ(j + 1)− t](λ+ 1)/λ)}, (3.11)

where t < αλ. The corresponding characteristic function is

ϕ (t) = αβλ

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(1, α(j + 1) + 1; [αλ(j + 1)− it](λ+ 1)/λ)

+ [(λ+ 1)/λ]Ψ (2, α(j + 1) + 2; [αλ(j + 1)− it](λ+ 1)/λ)}. (3.12)

where i =
√
−1.

Proof. The moment generating function of EGL distribution is given by

M (t) =

∫ ∞

0

etxf(x;α, β, λ)dx

=
αβλ2

λ+ 1

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!

∫ ∞

0

etx(x+ 1)

(
λ+ 1 + λx

λ+ 1

)α(j+1)−1

e−αλ(j+1)xdx

=
αβλ2

λ+ 1

∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!

∫ ∞

0

(x+ 1)

(
λ+ 1 + λx

λ+ 1

)α(j+1)−1

e−[αλ(j+1)−t]xdx.

(3.13)

The application of Lemma 1 shows that (3.13) can be rewritten as

M (t) = αβλ
∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(1, α(j + 1) + 1; [αλ(j + 1)− t](λ+ 1)/λ)

+ [(λ+ 1)/λ]Ψ (2, α(j + 1) + 2; [αλ(j + 1)− t](λ+ 1)/λ)}. (3.14)
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3.4 Order statistics

Suppose X1, X1, . . . , Xn is a random sample from EGL distribution. Let X1:n < X2:n < . . . < Xn:n

denote the corresponding order statistics. From [13], the PDF and CDF of the rth order statistic,
say Y = Xr:n, are given by

fY (y) =
n!

(r − 1)!(n− r)!
F r−1(y) [1− F (y)]n−r f(y)

=
n!

(r − 1)!(n− r)!

n−r∑
l=0

(
n− r
l

)
(−1)l F l+r−1(y)f(y) (3.15)

and

FY (y) =
n∑

j=r

(
n
j

)
F j(y) [1− F (y)]n−j

=
n∑

j=r

n−j∑
l=0

(
n
j

)(
n− j
l

)
(−1)l F j+l(y), (3.16)

where f(·) and F (·) are the PDF and CDF of the EGL distribution, respectively. It follows from
Equations 2.5 and 2.6 that

fY (y) =
αβλ2(1 + y)n!

(λ+ 1)(r − 1)!(n− r)!

(
λ+ 1 + λy

λ+ 1

)α−1 n−r∑
l=0

(
n− r
l

)
(−1)l e−αλy

×
[
1−

(
λ+ 1 + λy

λ+ 1
e−λy

)α]β(l+r)−1

(3.17)

and

FY (y) =

n∑
j=r

n−j∑
l=0

(
n
j

)(
n− j
l

)
(−1)l

[
1−

(
λ+ 1 + λy

λ+ 1
e−λy

)α]β(j+l)

. (3.18)

4 Characterizations of Model

Characterizations of distributions is an important research area which has recently attracted the
attention of many researchers. This section deals with various characterizations of the EGL
distribution. These characterizations are based on: (i) a simple relationship between two truncated
moments; (ii) the hazard function; (iii) the reverse (or reversed) hazard function and (iv) conditional
expectation of a function of the random variable. It should be mentioned that for characterization
(i) the CDF is not required to have a closed form.

We present our characterizations (i)− (iv) in four subsections.

4.1 Characterizations based on truncated moments

In this subsection we present characterizations of EGL distribution in terms of a simple relationship
between two truncated moments. The first characterization result employs a theorem due to [14], see
Theorem 2.1.1 below. Note that the result holds also when the interval H is not closed. Moreover,
as mentioned above, it could be also applied when the CDF F does not have a closed form. As
shown in [15], this characterization is stable in the sense of weak convergence.
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Theorem 4.1 Let (Ω,F ,P) be a given probability space and let H = [d, e] be an interval for
some d < e (d = −∞, e = ∞ might as well be allowed) . Let X : Ω → H be a continuous random
variable with the distribution function F and let g and h be two real functions defined on H such
that

E [g (X) | X ≥ x] = E [h (X) | X ≥ x] ξ (x) , x ∈ H,

is defined with some real function η. Assume that g, h ∈ C1 (H), ξ ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H. Finally, assume that the
equation ξh = g has no real solution in the interior of H. Then F is uniquely determined by the
functions g, h and ξ , particularly

F (x) =

∫ x

a

C

∣∣∣∣ ξ′ (u)

ξ (u)h (u)− g (u)

∣∣∣∣ exp (−s (u)) du ,
where the function s is a solution of the differential equation s′ = ξ′ h

ξ h − g
and C is the normalization

constant, such that
∫
H
dF = 1.

Proposition 4.1 Let X : Ω → (0,∞) be a continuous random variable and let , h (x) =[
1−

(
1 + λx

λ+1

)α

e−αλx
]1−β

and g (x) = h (x)
(
1 + λx

λ+1

)
e−λx for x > 0. The random variable X

has PDF (2.6) if and only if the function ξ defined in Theorem 4.1 has the form

ξ (x) =
α

α+ 1

(
1 +

λx

λ+ 1

)
e−λx, x > 0.

Proof. Let X be a random variable with PDF (2.6), then

(1− F (x))E [h (x) | X ≥ x] = β

(
1 +

λx

λ+ 1

)α

e−αλx, x > 0,

and

(1− F (x))E [g (x) | X ≥ x] =
α

α+ 1

(
1 +

λx

λ+ 1

)α

e−λ(α+1)x, x > 0,

and finally

ξ (x)h (x)− g (x) = h (x)

[
− 1

α+ 1

(
1 +

λx

λ+ 1

)
e−λx

]
< 0 for x > 0.

Conversely, if ξ is given as above, then

s′ (x) =
ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=

αλ2 (1 + x)

1 + λ (1 + x)
x > 0,

and hence

s (x) = αλx− α log (1 + λ (1 + x)) , x > 0.

Now, in view of Theorem A.1.1, X has density (2.6) .
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Corollary 4.1 Let X : Ω → (0,∞) be a continuous random variable and let h (x) be as in
Proposition A.1.1. The PDF of X is (2.6) if and only if there exist functions g and ξ defined in
Theorem 4.1 satisfying the differential equation

ξ′ (x)h (x)

ξ (x)h (x)− g (x)
=

αλ2 (1 + x)

1 + λ (1 + x)
, x > 0.

The general solution of the differential equation in Corollary 4.1 is

ξ (x) = (1 + λ (1 + x))−α eαλx

[
−
∫
αλ2 (1 + x) (1 + λ (1 + x))α−1 e−αλx (h (x))−1 g (x) +D

]
,

where D is a constant. Note that a set of functions satisfying the above differential equation is
given in Proposition 4.1 with D = 0. However, it should be also noted that there are other triplets
(h, g, ξ) satisfying the conditions of Theorem 4.1.

4.2 Characterization based on hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F , satisfies
the first order differential equation

f ′(x)

f (x)
=
h′
F (x)

hF (x)
− hF (x).

For many univariate continuous distributions, this is the only characterization available in terms of
the hazard function. The following characterization establish a non-trivial characterization of EGL
distribution, for β = 1, in terms of the hazard function, which is not of the above trivial form.

Proposition 4.2 Let X : Ω → (0,∞) be a continuous random variable. For β = 1,the PDF of
X is (2.6) if and only if its hazard function hF (x) satisfies the differential equation

h′
F (x)− (1 + x)−1 hF (x) = − αλ3

(1 + λ (1 + x))2
,

with the initial condition hF (0) = αλ2

λ+1
.

Proof. If X has PDF (2.6), then clearly the above differential equation holds. Now, it the
differential equation holds, then

d

dx

{
(1 + x)−1 hF (x)

}
= αλ2 d

dx

{
(1 + λ (1 + x))−1} ,

or

hF (x) =
αλ2 (1 + x)

1 + λ (1 + x)
,

which is the hazard function of the EGL distribution for β = 1.

8
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4.3 Characterization in terms of the reverse (or reversed) hazard
function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined as

rF (x) =
f (x)

F (x)
, x ∈ support of F.

Proposition 4.3 Let X : Ω → (0,∞) be a continuous random variable. The PDF of X is (2.6)
if and only if its reverse hazard function rF (x) satisfies the differential equation

r′F (x)− (1 + x)−1 rF (x) =
αβλ2

λ+ 1
(1 + x)

d

dx


(
1 + λx

λ+1

)α−1

1−
(
1 + λx

λ+1

)α

e−αλx

 .

Proof. If X has PDF (2.6), then clearly the above differential equation holds. Now, if the
differential equation holds, then

d

dx

{
(1 + x)−1 rF (x)

}
=
αβλ2

λ+ 1

d

dx


(
1 + λx

λ+1

)α−1

1−
(
1 + λx

λ+1

)α

e−αλx

 ,

or

rF (x) =
αβλ2 (1 + x)

(
1 + λx

λ+1

)α−1

(λ+ 1) [1−
(
1 + λx

λ+1

)α

e−αλx]
,

which is the reverse hazard function of the EGL distribution.

4.4 Characterizations based on conditional expectation

The following propositions have already appeared in [16], so we will just state them here which can
be used to characterize the EGL distribution.

Proposition 4.4 Let X : Ω → (a, b) be a continuous random variable with cdf F . Let ψ (x)
be a differentiable function on (a, b) with limx→a+ ψ (x) = 1. Then for δ ̸= 1 ,

E [ψ (X) | X ≥ x] = δψ (x) , x ∈ (a, b) ,

if and only if

ψ (x) = (1− F (x))
1
δ
−1 , x ∈ (a, b) .

Proposition 4.5 Let X : Ω → (a, b) be a continuous random variable with cdf F . Let ψ1 (x)
be a differentiable function on (a, b) with limx→b ψ1 (x) = 1. Then for δ1 ̸= 1 ,

E [ψ1 (X) | X ≤ x] = δ1ψ1 (x) , x ∈ (a, b) ,

9
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if and only if

ψ1 (x) = (F (x))
1
δ1

−1
, x ∈ (a, b) .

Remarks 4.4 (a) For ψ (x) =
(
1 + λx

λ+1

)
e−λx, β = 1 , δ = α

1+α
and (a, b) = (0,∞) , Proposition

4.4 provides a characterization of EGL distribution. (b) For ψ1 (x) = 1 −
(
1 + λx

λ+1

)α

e−αλx , δ1 =
β

1+β
and (a, b) = (0,∞) , Proposition 4.5 provides a characterization of EGL distribution. (c) Of

course there are other suitable functions than the ones we mentioned above, which are chosen for
simplicity.

5 Estimation of Model Parameters

In this section, we consider the estimation of the three parameters by the methods of moments and
maximum likelihood. Suppose x1, . . . , xn is a random sample of size n from the EGL distribution
given by (2.5). Under the method of moments, equating the theoretical moments E

(
Xk

)
with the

corresponding sample moments,

Mk =
1

n

n∑
l=1

xkl , k = 1, 2, 3. (5.1)

respectively, one obtains the system of equations

Mk = αβλk!

(
λ+ 1

λ

)k ∞∑
j=0

(−1)jΓ(β)

Γ(β − j)j!
{Ψ(k + 1, k + α(j + 1) + 1;α(j + 1)(λ+ 1))

+ [(k + 1)(λ+ 1)/λ]Ψ (k + 2, k + α(j + 1) + 2;α(j + 1)(λ+ 1))} (5.2)

which can be solved simultaneously to give estimates for α, β and λ.

Now consider estimation by the method of maximum likelihood. The log-likelihood for a random
sample x1, . . . , xn from the EGL distribution is

logL (α, β, λ) = n logα+ n log β + 2n log λ− n log(λ+ 1) +

n∑
i=1

log (1 + xi)− αλ

n∑
i=1

xi

+(α− 1)

n∑
i=1

log

(
λ+ 1 + λxi

λ+ 1

)
+ (β − 1)

n∑
i=1

log

[
1−

(
λ+ 1 + λxi

λ+ 1
e−λxi

)α]
.

(5.3)

Differentiating the log-likelihood with respect α, β and λ, respectively, and setting the result equal
to zero, we obtain the maximum likelihood estimates α̂, β̂ and λ̂ of the unknown parameters α, β
and λ, respectively.

6 Application

Now, consider the parameters estimation by beta-Dagum, beta-Lindley and Lindley distributions.
The PDF of beta-Dagum and beta-Lindley distributions are

1. Beta-Dagum (BD):

f (x;α, β, λ, a, b) =
abλ

B(α, β)
x−b−1

(
1 + λx−b

)−aα−1
[
1−

(
1 + λx−b

)−a
]β−1

; (6.1)
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2. Beta-Lindley (BL), defined by [17]:

f (x;α, β, λ) =
λ2(1 + x)e−βλx

(λ+ 1)B(α, β)

(
λ+ 1 + λx

λ+ 1

)β−1 (
1− λ+ 1 + λx

λ+ 1
e−λx

)α−1

, (6.2)

where x > 0, α > 0, β > 0, λ > 0, a > 0, b > 0 and B(·, ·) is the beta function defined by

B (a, b) =

∫ 1

0

ta−1 (1− t)b−1 dt. (6.3)

The data set represents the failure times of the air conditioning system of an airplane. This data
set was taken from [18].

The maximum likelihood estimates (MLEs) of the parameters and the values of the Akaike Information
Criterion (AIC) are reported in Table 1. The results show that the EGL distribution provides a
significantly better fit than the other three models.

Table 1. The maximum likelihood estimates and AIC of the models

Distribution Maximum Likelihood Estimates AIC

BD α̂ = 2.97, β̂ = 17.91, λ̂ = 4.68, â = 2.20, b̂ = 0.33 312.93

BL α̂ = 0.45, β̂ = 0.52, λ̂ = 0.03 311.46

EGL α̂ = 0.05, β̂ = 0.64, λ̂ = 0.28 309.86

Lindley λ̂ = 0.03 321.27

Plots of the estimated PDF of the BD, BL, EGL and Lindley models fitted to these data are given
in Fig 2. The figure indicates that the EGL distribution is superior to the other distributions in
terms of model fitting.

Fig. 2. Histogram and estimated densities

The probability plots consists of plots of the observed probabilities, against the probabilities predicted
by the fitted model. Fig. 3 display the probability plots and supports the results shown in Table 1.
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(a) BD distribution. (b) Beta Lindley distribution.

(c) EGL distribution. (d) Lindley distribution.

Fig. 3. Probability plots from the fitted distributions

7 Conclusion

We proposed a new distribution, named the exponentiated generalized Lindley distribution distribution
which extends the Lindley and exponentiated Lindley distributions, among others. Several properties
of the new distribution were investigated, including the moments. The estimation of parameters
by the method of moments and the maximum likelihood have been discussed. An application of
the exponentiated generalized Lindley distribution to a real data show that the new distribution
can be used quite effectively to provide better fits than the beta Dagum, beta lindley and Lindley
distributions.
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