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Abstract 
 

In this work, we develop a stability theorem for determining the stability or otherwise of a gyroscopic 
system. A Lyapunov function is obtained by solving the arising Lyapunov matrix equation. The 
Lyapunov function is then used to obtain response bounds for displacements and velocities both in the 
homogeneous and inhomogeneous cases. Examples are given to illustrate the efficacy of the results 
obtained.   
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1 Introduction 
 
Gyroscopic effects play an important role in many problem areas of science and engineering. Systems of the 
form    
 

��� � ��� � �� � 	
��                                                                                                                     (1) 
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describe gyroscopic systems (where � and � are Hermitian matrices). The mass matrix � and the stiffness 
matrix �  are positive definite
� � �∗ > 0, � � �∗ > 0�, where * denotes the conjugate transpose. The 
matrix �  of the gyroscopic force is skew-Hermitian (� � −�∗� in particular real skew-symmetric. The 
vector � represents the generalized co-ordinates of the system and 	
�� describes the excitation. 
 
The stability or otherwise of matrix second-order systems has been of considerable interest for over three 
decades. These systems, which are of the form (1) are of fundamental importance in the study of vibrational 
phenomena. These systems are important mathematical models for rotor systems, satellites and fluid 
conveying pipes. Stability properties of the systems have been studied for more than one hundred years. 
 
These systems have been studied by [1-10] and useful results for establishing the stability or instability of 
the systems are given.   
 
In this work, we study the gyroscopic system with a view to obtaining a novel condition for determining the 
stability or instability of the systems.  
 

2 Preamble 
 
Consider the homogeneous linear system obtained from (1)  
          

0=++ KxxGxM &&&                                            (2) 

 

Assuming solutions of the form  tqex λ=  
 
(where q is an arbitrary constant and λ is the eigenvalue), 
 

Using tqex λ=  on (2) we have 
 

( ) 0)2 =++ qKGM λλ                                             (3) 

 

where 0≠teλ  and  0≠q . 

 
The stability of the system (2) can be understood in terms of the eigenvalue problem (3).  The eigenvalues λ 

are obviously the roots of the characteristics polynomial of degree 2n, det ( )KGM ++ λλ2 .  If all 

eigenvalues have negative real parts, then the system (2) is said to be asymptotically stable. The asymptotic 
stability of a system can also be determined by Routh-Hurwitz Criterion. 
 
Alternatively, the stability of the system can be discussed directly by such properties of the system matrices 
which can be interpreted in a physical way.  Applying the direct method of Lyapunov, such an interpretation 
is usually possible. 
 
The system (2) is equivalent to the system 
 

Azz =&                                                          (4) 
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where I is the identity matrix. 
 

The function V(z(t)) is called a Lyapunov function for system (4) if V > 0 and the time derivative 0≤V&  for 
all solutions z(t) of (4).  The existence of such a Lyapunov function implies stability of the system 

(asymptotic stability if 0<V& ) [11]. Lyapunov functions can be considered as generalized energy 
expressions and therefore it makes sense to look for V as a quadratic form in the co-ordinates and in the 
velocities.  
 

( ) ( )tPztzV *=                                                 (5) 
 

with a Hermitian matrix P>0.  For the solutions of (4), we then have  
 

( ) ( ) ( )tzPAPAtzV += ** , such that condition  0≤V&   is expressed by the matrix 0* ≥= QQ   of 

the Lyapunov matrix equation. 
 

 QPAPA −=+*                                             (6) 
 
The system (4) (and therefore also system (2) is asymptotically stable, if there exists Hermitian matrices P>0 
and Q>0 which satisfy the Lyapunov matrix equation (6). Consider the matrices. 
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where γ is a real number.  
  

3 Stability Analysis 
 
The asymptotic stability of the system (4) and of the original system (2) is ensured.  Notice that we assume  

0* >= MM   and  0* >= KK . We now state the following Lemma which gives a condition for the 
positive definiteness of P and Q. 
 
Schur’s Lemma 
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  with Hermitian submatrices R1 and R3 is positive definite if and only if R1 and 

21
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Applying the lemma to Q, we get that Q > 0 if and only if there exists γ >0 such that  
 

( ) 0
2

*
2

2 1 >−− − GKGMG
γγγγ  

0*
4

2 1
2

2 >−− − GKGMG
γγγ

 
 
Rearranging terms we get the following condition 
 

02*
4

1 12 >+






 +− − GGKGM γγ
                             (8) 

 
Consider all z∈Cn, then (8) is equivalent to the inequality 
         

02**
4

1
* 12 >+







 +− − GzzzGKGMz γγ
              (9) 

 

Taking 1* =zz ,  the coefficients of the quadratic polynomial in γ are Rayleigh quotients for Hermitian 
matrices.  These Rayleigh quotients are limited by the smallest eigenvalue λmin and the largest eigenvalue 

λmax of the respective matrices.  The Rayleigh quotients for the matrices  GGKGM 2,*
4

1
, 1−

  are all 

positive since M, and 1−K   are assumed to be positive definite.   
 
Introducing the scalars a and b defined by  
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                                     (10) 
 

The inequality (9) is now satisfied if there exists γ >0 with  
 

- 02 >+ ba γγ                             (11) 

 

Thus, γ > 0     or     
a

b<γ  

 

There are solutions of γ > 0  if and only if b > 0 and 0
4

2

>
a

b

 
 
In this case γ can be chosen as any number in the interval 
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a

b<< γ0
 

 
The matrices Q and P are positive definite.  
 
which is equivalent to P>0 
 
The following theorem is formulated 
 
Theorem 1: 

Assume a and b defined by (10).  If b>0 and 0
4

2

>
a

b
  then the system (2) is asymptotically stable. 

Applying the following simplifications from (10), we make the following estimates. 
 
λmax M = mmax 

( ) max
2
max

1
max /* kgGKG =−λ

                       (12)
 

minmin 22 gG =λ  

maxmax
2
maxmax 2,

4

1
gbkgma =+=  

 

Applying (12) on  0
4

2

>
a

b
  

 
We have the following condition  
 

( ) 04/4,02 2
maxminmax

2
maxminmax >+> gkmgkg

              (13)

 

From (11), we choose an appropriate γ > 0 as 
a

b=γ
 

 

( )2
maxminmaxminmax 4/8 gkmkg +=γ

                      (14)
   

Eqn. (13) is a simple sufficient condition for asymptotic stability of system (2) [13]. 
 

4 Response Bounds for Homogeneous Case 
 
The homogeneous system (2) which is assumed to be stable is considered.  The stability of the system 
implies there exists a value γ > 0 and a Lyapunov function V for a given solution x(t) . Thus, we have the 
following  
 

( ) ( )tPztzV *=  

( ) ( ) ( ) ( ) ( ) ( ) 0

*2
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where V0  is the initial energy given by the initial condition  
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We now establish the response bounds for the amplitude and velocity.  To obtain a bound for the amplitude 
of x(t), we estimate the first term of V. 
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From (17)  
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Therefore, 
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But  
 

( ) ( ) ( ) 2
* txtxtx =

                                         (19) 
 

Applying (19) on (18) we have 
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To obtain the tightest bound, we choose 
a

b

2
=γ .  This choice seems to be advantageous in general.  We 

obtain a bound for the velocity ( )tx&   by estimation of the second term of V as follows. 
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From (15) 
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Therefore it implies that  
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In addition to the estimates of the norms it is possible to find bounds for every individual co-ordinates.  For a 

given quadratic form ( ) ( ) 0,* >= PtPztzV  and for a fixed value V, we can give an upper bound for the 
co-ordinate zk as 
 

1−≤ kkk VPz
                                                    (23) 

 

where 1−
kkP  is the kth diagonal element of the matrix P-1.  

 
Analogous to (20) the amplitude bound for xk(t) is   
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A bound for ( )txk&  can similarly be found from  
 

( ) ( ) 1
02

−≤+ kkkk MVtxtx
γ
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                                           (25) 
 

where 1−
kkM   is the kth diagonal element of the inverse matrix M-1. 

 
It follows from (25) that 
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But 

( ) ( ) ( ) ( ) 1
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Therefore 
 

( ) ( ) 1
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                                                (26)
 

 

5 Response Bounds for the Inhomogeneous Case 
 
Consider the inhomogeneous system 
 

)(tfKxxGxM =++ &&&                                                          (27) 
 

which we again assume is stable in accordance with Theorem 1.  The response bounds for a solution x(t) of 
(27) satisfying the given initial conditions x(0) and ( )0x&   can be established.  For a non-transient excitation 

f(t) it is normally easy to find a particular solution xpart(t)  and its corresponding state and velocity bounds.  

We then define a solution ( )txtxtx parth −= )()(   to the homogeneous system of (27) with the initial 

conditions, ( )0)0()0( parth xxx −=  and ( )0)0()0( parth xxx &&& −= .  For ( )txh   we thus have 
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where V0,h  is the initial energy condition of the homogenous system of (27). 
 
Using (20) and (24) the earlier results for the response bounds of x(t) and xk(t), we have 
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Similarly, using (19) and (26), we obtain the following response bounds for  ( )tx&  and  ( )txk&  as 
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For a transient excitation f(t), we can find a solution to (27) with the initial conditions x(0) = 0 and 

( ) 00 =x&  by calculating the convolution of the impulse response matrix φ(t) and f(t).  The solution of (27) 

is as follows: 
 

( ) ( ) ( ) τττφ dfttx
t
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The impulse response matrix φ(t) satisfies 
 

( ) ( ) 10,00,0 ===++ φφφφφ &&&& MKGM
 

 
where I is the identity matrix. 
 
We now assume that the excitation vector f(t) has the form 
 

F(t) = uψ(t) 
 

where u is a constant vector and ψ(t) is a scalar function subjected to  
 

( ) αψ <= ∫
∞
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To obtain bounds of solution x(t) given by (28), we have to estimate the solution to the homogeneous 

equation ϕ(t) = φ(t)u  which satisfies the initial conditions ϕ(0) = 0 and ( ) ( ) uMu 100 −== φϕ && ,  and 

therefore  uMuV h
1*

,0
−= .   This leads to the following estimate of the 2-norm of the solution x(t).   
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By using (26), we can also obtain an estimate for the co-ordinate xk(t) of the solution x(t) as follows: 
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6 Illustrations 
 
Example 1: 
 
To illustrate the formulas for the response bounds of the homogeneous system (2), let us consider the 2x2 
system described by 
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We obtain the values of the constants a and b as defined in (11) as follows: 
 

09203.0
3852.17

16

)3463.4(4

)4(

4

4)4,4(2

3463.4)6537.1,3463.4()
4

1
(

22

minmin

max
1*

max

>−=−=−=

−=−==

==+= −

i

a

b

iiiGb

GKGMa

λλ

λλ

 
 
Therefore the system (31) is unstable.  
 
Example 2: 
 
The Example 1 above shows the case where the system is unstable because of non-satisfaction of the 
conditions in theorem 1. In this example, we illustrate a system which is stable. Consider the 2x2 system 
described by 
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The constants a and b defined in (11) are as follows: 
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System (32) satisfies the conditions of Thm1 and is therefore stable. 
 

7 Conclusion 
 
Gyroscopic systems are important mathematical models for many science and engineering systems. The 
stability or instability of gyroscopic systems plays an important role in many problem areas. Lyapunov direct 
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method have been used to analyse the stability or otherwise of gyroscopic system. The response bounds for 
displacements and velocities both in the homogeneous and inhomogeneous cases have been obtained. A 
novel stability theorem has been developed for determining the stability or otherwise of gyroscopic systems. 
Examples have been given to illustrate the efficacy of the results obtained.  
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