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Abstract

In this work, we develop a stability theorem for deteingnthe stability or otherwise of a gyrosco
system. A Lyapunov function is obtained by solving thesiagi Lyapunov matrix equation. Th
Lyapunov function is then used to obtain response bounddidplacements and velocities both in the
homogeneous and inhomogeneous cases. Examples are giventtatélltise efficacy of the resul
obtained.
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1 Introduction

Gyroscopic effects play an important role in many prolédeeas of science and engineering. Systems of the
form

Mi + Dx + Kx = f(t) 1
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describe gyroscopic systems (whéfeandK are Hermitian matrices). The mass maiixand the stiffness
matrix K are positive definitgy = M* > 0,K = K* > 0), where * denotes the conjugate transpose. The
matrix G of the gyroscopic force is skew-HermitiaG¢ € —G*) in particular real skew-symmetric. The
vectorx represents the generalized co-ordinates of the systeyf{andescribes the excitation.

The stability or otherwise of matrix second-order systéas been of considerable interest for over three
decades. These systems, which are of the form (Ifdomdamental importance in the study of vibrational
phenomena. These systems are important mathematical snfutetotor systems, satellites and fluid
conveying pipes. Stability properties of the systems haee Btudied for more than one hundred years.

These systems have been studied by [1-10] and usefulsrésukstablishing the stability or instability of
the systems are given.

In this work, we study the gyroscopic system with a viewbtaining a novel condition for determining the
stability or instability of the systems.

2 Preamble

Consider the homogeneous linear system obtained from (1)

MX+Gx+Kx=0

@
Assuming solutions of the fornX = qéIt
(whereqis an arbitrary constant adds the eigenvalue),
. — t
Using X = qé' on (2) we have
2 —
(#M +1G)+K)q=0 -

wheree™ #0 and q # 0.

The stability of the system (2) can be understood indexfithe eigenvalue problem (3). The eigenvallies

are obviously the roots of the characteristics polynorofatiegree2n, det ()IZM +AG+ K). If all

eigenvalues have negative real parts, then the systeis1ga)d to be asymptotically stable. The asymptotic
stability of a system can also be determined by Routh-Hu@viterion.

Alternatively, the stability of the system can be disedsdirectly by such properties of the system matrices
which can be interpreted in a physical way. Applying thectlimeethod of Lyapunov, such an interpretation
is usually possible.

The system (2) is equivalent to the system

2= Az )
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where

%) (% %) (% O !

X,) % x ) % -M7K -M7G
where | is the identity matrix.

The functionV(z(t))is called a Lyapunov function for system (4Yi& 0 and the time derivativd < O for
all solutionsz(t) of (4). The existence of such a Lyapunov function iewplstability of the system

(asymptotic stability if\V <0) [11]. Lyapunov functions can be considered as generalizethyene
expressions and therefore it makes sense to look fas a quadratic form in the co-ordinates and in the
velocities.

V= z(t)* Pz(t) ®)

with a Hermitian matri¥°>0. For the solutions of (4), we then have
V= Z(t)* (A* P+ PA) Z(t), such that conditionV < 0 is expressed by the matf@ = Q* = 0 of
the Lyapunov matrix equation.

A* P +PA=-Q ©)

The system (4) (and therefore also system (2) is asyiogily stable, if there exists Hermitian matri¢es0
andQ>0 which satisfy the Lyapunov matrix equation (6). Considenthgices.

4 /4
K <M 7
2 K 2G

MM ge 2G - M
2 (N

wherey is a real number.
3 Stability Analysis

The asymptotic stability of the system (4) and of thgimal system (2) is ensured. Notice that we assume
M =M*>0 and K = K* > 0. We now state the following Lemma which gives a conditmmnthe
positive definiteness of P and Q.

Schur's Lemma
A matrix [Rl R2] with Hermitian submatriceB; andR; is positive definite if and only iR; and
R

R, R,
R, - R,R'R, are positive definite [12].
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Applying the lemma to Q, we get that Q > 0 if and ohiyére existg/>0 such that
2G-M -Ye*(K)*Le >0
2 2
¥2G - M —ée* K'G>0

Rearranging terms we get the following condition

—yz(M +£G* K‘lGJ+yZG >0
4
®
Consider alz/ZC", then (8) is equivalent to the inequality
—yzz*(M +EG* K'lsz+ yz* 2Gz>0
4 (©)

Taking Z2'z2=1, the coefficients of the quadratic polynomialyirare Rayleigh quotients for Hermitian
matrices. These Rayleigh quotients are limited by thdleshaigenvalue\,;, and the largest eigenvalue

1 _
Amax Of the respective matrices. The Rayleigh quotientstfermatrices M,=~G* K™7G,2G are all
positive sinceM, and K L are assumed to be positive definite.

Introducing the scalaandb defined by

a:/lmax(M +%G* K‘lGJ >0

b=42G
(10)
The inequality (9) is now satisfied if there exigtsO with
-y'a+p>0 (12)

b
Thus, y>0 or J)<-—
a

2
There are solutions ¢f> 0 if and only ifb > 0 and 4— >0
a

In this casegs/can be chosen as any number in the interval
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O<y<9
a
The matrices Q and P are positive definite.
which is equivalent t&>0

The following theorem is formulated

Theorem 1:
2

b
Assumea and b defined by (10). Ifb>0 and4— >0 then the system (2) is asymptotically stable.
a

Applying the following simplifications from (10), we malkhe following estimates.

/]maxM = mmax
AoaxlG* K7G) = @20/ Ko

Amin 2G = 2gmin

(12)

b =29,

max’

1.2
a=m,, +—0..K
max 4gmax

b2
Applying (12) on — >0
4a

We have the following condition
ngax > O’ 4kmingr?1ax/(4rnmakain + grznax) > O
13)
From (11), we choose an approprigte 0 as )/ = E
a
V= 89makain /(4rnmakain + griax) (]_4)

Eqn. (13) is a simple sufficient condition for asymptotabgity of system (2) [13].
4 Response Bounds for Homogeneous Case

The homogeneous system (2) which is assumed to be ssabtmnsidered. The stability of the system

implies there exists a valye> 0 and a Lyapunov function V for a given solutieft) . Thus, we have the
following

V = 2(t) Pt)
V= (t)[K L jx(t)+(x(t)+gx(t)j M (x(t)+gx(t)j <V,

(15)
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whereV, is the initial energy given by the initial condition

V, = x* (0)(K S jx(0)+ (x(o)+g x(O)j* y (x(o)+g X(Ot)j

We now establish the response bounds for the amplitudeedocity. To obtain a bound for the amplitude
of x(t), we estimate the first term of V.

OsAmir{K L Jx* (Ox(t) < x* (t)(K L jx(t)

(16)
From (17)
. (t)[K Y ]x(t)svo
4 17)
Therefore,
A K=o e )2
4 (18)
But
x* (t)x(t) = |x(t)” (19)
Applying (19) on (18) we have
Amm[K Ay j||x(t)||2 <V,
V,
M= ——
e
4 (20)

b
To obtain the tightest bound, we chogge= 2— This choice seems to be advantageous in general. We
a

obtain a bound for the velocitx(t) by estimation of the second term of V as follows.
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(x(t)+g x(t)j*M(X(t)+J—2/ x(t)jz/lmin(M )(x(t)+g x(t)j*(x(t)+;—2/ x(t)j

2

2 ()] 2 0, 00 500
2 (0 R~ 20 o
From (15)

()’((t)+1—2/ x(t)jm(x(t)% x(t)jsvo

Therefore it implies that

ORI

. 4 V
%)= 5 X+ |57
2 Amin (M ) (22)

In addition to the estimates of the norms it is posdiblfind bounds for every individual co-ordinates. &or

given quadratic fornV = Z(t)* Pz(t), P >0 and for a fixed value V, we can give an upper bound for the
co-ordinate gas

|z < VR (23)

where P, is the kth diagonal element of the matri P

Analogous to (20) the amplitude bound feftkis

% (t) < \/VO[K —é M ]_1

Kk (24)

A bound for Xk(t) can similarly be found from

PRS0 ERAY

(25)
where M k_kl is the kth diagonal element of the inverse matrik M

It follows from (25) that
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%]+ L) = VoM
But

(0] = Zc 1) < i )+ L e ] < oM

Therefore
)< 2P+ Vo

5 Response Bounds for the Inhomogeneous Case

Consider the inhomogeneous system

MX + Gx + Kx = f(t)

(26)

(27)

which we again assume is stable in accordance with Thebrehine response bounds for a solution x(t) of
(27) satisfying the given initial conditions x(0) ap’nﬂO) can be established. For a non-transient excitation
f(t) it is normally easy to find a particular solutiop,%t) and its corresponding state and velocity bounds.
We then define a solutiotx, (t) = x(t) _Xpart(t) to the homogeneous system of (27) with the initial

conditions, X, (0) = X(0) = X (0) and x, (0) = x(0) - Xpart (0). For x, (t) we thus have

v, = x;(o)[K +-§ijh(o)+[xh(o)+g xh(O)j M[xh(o)+g xh(O)j

whereVy, is the initial energy condition of the homogenous system of (27)

Using (20) and (24) the earlier results for the response afixdt) andx(t), we have

[x{t) <

+[Xpen (1)

and

1)< \/voyh[K Ly j o)

Similarly, using (19) and (26), we obtain the followingpesse bounds for)'((t) and X, (t) as
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N =50 5 + )

/]min (M

and

2 -1
)= Vo K20 | 4l

For a transient excitation f(t), we can find a solution(27) with the initial conditionx(0) = 0 and
x(O) = 0 by calculating the convolution of the impulse responsgima(t) andf(t). The solution of (27)
is as follows:

x(t)= J.; dAt-7)f(r)dr

The impulse response mati) satisfies

(28)

M@+Gp+Kp=0, ¢0)=0, Mg0)=1

wherel is the identity matrix.
We now assume that the excitation vector f(t) has tha for
F(t) = ugt)

where u is a constant vector agit) is a scalar function subjected to

P= J': w(t)dt<a

To obtain bounds of solutior(t) given by (28), we have to estimate the solution to thedgemeous
equationg(t) = ¢t)u which satisfies the initial conditiong(0) = 0 and ¢(O) = dO)u =M "u, and

therefore Vo,h =u'Mu. This leads to the following estimate of the 2-nafrthe solutior(t).

*n -1
Ml [P
Amin(K _Z M j
(29)
By using (26), we can also obtain an estimate for therdmatex,(t) of the solutiorx(t) as follows:
-1
% (t) <. [uM ’lu[K —é Mj P
kk (30)
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6 lllustrations

Example 1:

To illustrate the formulas for the response bounds of the genamus system (2), let us consider the 2x2
system described by

A L e S F M

We obtain the values of the constants a and b as definetl)ingollows:

a=A .M+ %G* K™'G)=A,,,(434631.6537) = 4.3463
b =210 2G = Ay, (4,-41) = =4

2 VY _
bo_ G4 _ -16 -0.9203p 0

4a 443463 17.3852

Therefore the system (31) is unstable.
Example 2:
The Example 1 above shows the case where the system #&blanbecause of non-satisfaction of the

conditions in theorem 1. In this example, we illustrateystesn which is stable. Consider the 2x2 system
described by

S L P M Kl

The constants a and b defined in (11) are as follows:

1

a=A._M+ ZG* K '1G) =A..@4n=7
b= Amin (2G) = /1min (610) =6
2
Thus? =36 -1 285750
4a 28

2

b
b>0 and —>0.
4a

System (32) satisfies the conditions of Thm1 and ietbes stable.

7 Conclusion

Gyroscopic systems are important mathematical modelsnéory science and engineering systems. The
stability or instability of gyroscopic systems plays maportant role in many problem areas. Lyapunov direct

10
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method have been used to analyse the stability or otberfigyroscopic system. The response bounds for
displacements and velocities both in the homogeneous anchageneous cases have been obtained. A
novel stability theorem has been developed for determining thifitgtar otherwise of gyroscopic systems.
Examples have been given to illustrate the efficacy ofekalts obtained.
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