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Abstract

There are 19 densities involved in the hierarchical Bayes model with two conditional levels, in
which the 3 densities, that is, the likelihood function, the first level prior density, and the second
level prior density, are known densities. We have written the 16 unknown densities in terms
of the 3 known densities in a theorem which is very handy for practitioners and researchers
interested in the hierarchical Bayes model with two conditional levels. Finally, we apply the
theorem to a specific hierarchical normal Bayes model with two conditional levels and obtain the
functional forms of the 16 unknown densities. Moreover, we figure out the exact distributions of
the 16 densities, which are one-, two-, or three-dimensional normal distributions.
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1 Introduction

Bayesian approaches are continually developing, with [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] being some
of the most important works. There is an ambivalent aspect of Bayesian analysis: It is sufficiently
reductive to produce an effective decision, but this efficiency can also be misused. A pertinent
criticism is that the prior information is rarely rich enough to define a prior distribution exactly.
The empirical Bayes analysis, see [13, 14, 15, 16, 17, 4, 18, 19, 20] among others, is based on a
perception of imprecision over the prior information, but at a more pragmatic level. The empirical
Bayes analysis relies on a conjugate prior modeling, where the hyperparameters are estimated
from the observations and this “estimated prior” is then used as a regular prior in the subsequent
inference. However, the empirical Bayes analysis is out of the Bayesian paradigm. Alternatively,
the hierarchical Bayes analysis (see [21, 22, 23, 4, 24, 8, 12]) considers that the imprecision over the
prior information can be done within the Bayesian paradigm, according to which, uncertainty at
any level is incorporated into prior distributions. In the simplest cases, the hierarchical structure
is reduced to two prior levels. The first level (or lower level) prior distribution is generally a
conjugate prior, owing to the computational tractability of these distributions. The second level
(or upper level) prior distribution is usually a noninformative prior due to lack of information. The
hierarchical Bayes modeling has many applications in real life, such as medicine, biology, animal
breeding, economics, and so on. In meta-analysis, several experiments about the same phenomenon
undertaken at different places with different subjects and different protocols are pooled together
(see [25, 26]).

The author in [8] has listed several justifications for the hierarchical Bayes analysis. It is also
pointed out that it is seldom necessary to go beyond two conditional levels in the hierarchical
decomposition. For the hierarchical Bayes model with two conditional levels, Lemma 10.2.9 in
[[8], pg.466] has calculated π (θ|x) in terms of π (θ|x, θ1) and π (θ1|x), which in turn depend on
the 3 known densities π (x|θ), π (θ|θ1), and π (θ1). In fact, there are 19 densities involved in the
hierarchical Bayes model with two conditional levels, and they can be concisely written in Fig. 1.
Inspired by the lemma, we have calculated the remaining 16 densities in terms of the 3 known
densities, and the result is summarized in Theorem 2.1.

The rest of the paper is organized as follows. In the next Section 2, we have written the 16 unknown
densities in terms of the 3 known densities in Theorem 2.1. In Section 3, we apply Theorem 2.1
to a hierarchical normal Bayes model with two conditional levels and obtain the functional forms
of the 16 densities. Moreover, we figure out the exact distributions of the 16 densities. Section 4
concludes.

2 Main Results

We consider the following hierarchical Bayes model with two conditional levels:
x|θ ∼ π (x|θ) ,
θ|θ1 ∼ π (θ|θ1) ,
θ1 ∼ π (θ1) .

In [8], the 3 densities are written as π (x|θ) = f (x|θ), π (θ|θ1) = π1 (θ|θ1), and π (θ1) = π2 (θ1).
Here, we intentionally write all the densities as π () to lighten notations and also to focus on the
arguments. Let x ∈ X , θ ∈ Θ, and θ1 ∈ Θ1. We will use

∫
f (x) dx,

∫
g (θ) dθ, and

∫
h (θ1) dθ1

to represent
∫
X f (x) dx,

∫
Θ
g (θ) dθ, and

∫
Θ1

h (θ1) dθ1, respectively, that is, we omit the domain of
integration to lighten notations. The 19 densities involved in the hierarchical Bayes model with two
conditional levels, can be concisely presented in Fig. 1.
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Fig. 1. The 19 densities of the hierarchical Bayes model with two conditional levels

In the hierarchical Bayes model with two conditional levels, we usually assume that the 3 densities
π (x|θ), π (θ|θ1), and π (θ1) are known densities. Our goal is to write the other 16 densities in terms
of the 3 known densities.

We have the following lemma which states an equivalence relationship between two equations.
Lemma 2.1

π (x|θ, θ1) = π (x|θ) (2.1)

is equivalent to
π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) . (2.2)

Proof. Assume that relation (2.1) holds. Then

π(x, θ, θ1) = π(x|θ, θ1)π(θ, θ1) = π(x|θ)π(θ|θ1)π(θ1).

Conversely, if relation (2.2) holds, we derive that

π(x|θ, θ1)π(θ, θ1) = π(x, θ, θ1) = π(x|θ)π(θ|θ1)π(θ1) = π(x|θ)π(θ, θ1),

and thus π(x|θ, θ1) = π(x|θ). 2

To calculate the other 16 densities in terms of the 3 known densities, we make the following
assumptions.

(A1). (2.1) or (2.2) holds true.

(A2). All the 19 densities are positive proper densities, that is, they are positive and integrate to
1.

(A3). (x, θ, θ1) ∈ X ×Θ×Θ1, so that changing the order of integration is allowed.

With the preparations of Lemma 2.1 and the three assumptions, we have the following theorem, in
which we have written the 16 unknown densities in terms of the 3 known densities.

Theorem 2.1 Let the assumptions (A1), (A2), and (A3) hold. Then we can calculate the other 16
densities in terms of the 3 known densities π (x|θ), π (θ|θ1), and π (θ1) as follows. The following 5
densities are related to x.

π (x) =

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1,
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π (x|θ1) =
∫

π (x|θ)π (θ|θ1) dθ,

π (x|θ, θ1) = π (x|θ) ,

π (θ, θ1|x) =
π (x|θ)π (θ|θ1)π (θ1)∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝ π (x|θ)π (θ|θ1)π (θ1) ,

π (θ, θ1) = π (θ|θ1)π (θ1) .

The following 5 densities are related to θ.

π (θ) =

∫
π (θ|θ1)π (θ1) dθ1,

π (θ|x) =
∫
π (x|θ)π (θ|θ1)π (θ1) dθ1∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝
∫

π (x|θ)π (θ|θ1)π (θ1) dθ1,

π (θ|x, θ1) =
π (x|θ)π (θ|θ1)∫
π (x|θ)π (θ|θ1) dθ

∝ π (x|θ)π (θ|θ1) ,

π (x, θ1|θ) =
π (x|θ)π (θ|θ1)π (θ1)∫

π (θ|θ1)π (θ1) dθ1
∝ π (x|θ)π (θ|θ1)π (θ1) ,

π (x, θ1) =

∫
π (x|θ)π (θ|θ1)π (θ1) dθ.

The following 5 densities are related to θ1.

π (θ1|x) =
∫
π (x|θ)π (θ|θ1)π (θ1) dθ∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝
∫

π (x|θ)π (θ|θ1)π (θ1) dθ,

π (θ1|θ) =
π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∝ π (θ|θ1)π (θ1) ,

π (θ1|x, θ) = π (θ1|θ) =
π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∝ π (θ|θ1)π (θ1) ,

π (x, θ|θ1) = π (x|θ)π (θ|θ1) ,

π (x, θ) =

∫
π (x|θ)π (θ|θ1)π (θ1) dθ1.

Finally, the joint density
π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) .

Note that in the above theorem the observation x can be replaced by the sample x. If the random
variables x, θ, or θ1 are discrete, then the integrals can be replaced by the sums.

Proof. Note that 4 of the 16 densities are obviously represented by the 3 known densities. They
are π (x|θ, θ1), π (θ, θ1), π (θ), and π (x, θ, θ1). Apart from the 4 obvious densities, the other 12
densities need to be calculated. We find that some of the 12 densities can be calculated by the 3
known densities and the 4 obvious densities, and they should be calculated first. So their calculation
order is 1, and we refer them to order 1 densities. Some of the remaining densities depend on the
order 1 densities, and we refer them to order 2 densities. Finally, order i densities depend on
order i − 1 densities for i = 2, 3, 4, 5. The 12 densities, their dependence densities, and the order
of calculation is summarized in Table 1. In the table, Mi, i = 1, 2, 3, represents Method i, and
Oi, i = 1, 2, 3, 4, 5, represents Order i. In Table 1, note that π (θ, θ1|x) can be calculated by three
methods. By method 1, π (θ, θ1|x) depends on π (x) which is an order 3 density, so in this case
π (θ, θ1|x) is called an order 4 density. By method 2, π (θ, θ1|x) depends on π (θ|x, θ1) and π (θ1|x),
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which are order 3 and order 4 densities, so in this case π (θ, θ1|x) is called an order 5 density. By
method 3, π (θ, θ1|x) depends on π (θ1|x, θ) and π (θ|x), which are order 1 and order 4 densities, so
in this case π (θ, θ1|x) is called an order 5 density. We call π (θ, θ1|x) an order 5 density because we
use the highest order of the density of the three methods. The order of the density is useful only
to facilitate the calculations by orders.

Table 1. The 12 densities, their dependence densities, and the order of calculation

Target densities Dependence densities Order of calculation

π (x) M1: π (θ); M2: π (x|θ1) (O2) O3

π (x|θ1) π (x, θ|θ1) (O1) O2

π (θ, θ1|x)
M1: π (x) (O3);
M2: π (θ|x, θ1) (O3), π (θ1|x) (O4);
M3: π (θ1|x, θ) (O1), π (θ|x) (O4)

O5

π (θ|x) π (θ) , π (x) (O3) O4

π (θ|x, θ1) π (x|θ1) (O2) O3

π (x, θ1|θ) M1: π (θ); M2: π (θ1|θ) (O1) O2

π (x, θ1) π (x|θ1) (O2) O3

π (θ1|x) π (x) (O3), π (x|θ1) (O2) O4

π (θ1|θ) O1

π (θ1|x, θ) O1

π (x, θ|θ1) O1

π (x, θ) O1

Now we calculate the order 1 densities π (θ1|θ), π (θ1|x, θ), π (x, θ|θ1), and π (x, θ) sequentially. It
is easy to show that

π (θ1|θ) =
π (θ|θ1)π (θ1)

π (θ)
=

π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∝ π (θ|θ1)π (θ1) .

For π (θ1|x, θ), we have

π (θ1|x, θ)π (x|θ)π (θ) = π (θ1|x, θ)π (x, θ) = π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) ,

and therefore,

π (θ1|x, θ) =
π (θ|θ1)π (θ1)

π (θ)
= π (θ1|θ) =

π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∝ π (θ|θ1)π (θ1) .

For π (x, θ|θ1), we have

π (x, θ|θ1)π (θ1) = π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) ,

and thus,
π (x, θ|θ1) = π (x|θ)π (θ|θ1) .

It is easy to show that

π (x, θ) = π (x|θ)π (θ) = π (x|θ)
∫

π (θ|θ1)π (θ1) dθ1 =

∫
π (x|θ)π (θ|θ1)π (θ1) dθ1.

After that, we calculate the order 2 densities π (x|θ1) and π (x, θ1|θ) sequentially. The density
π (x|θ1) depends on π (x, θ|θ1), and thus

π (x|θ1) =
∫

π (x, θ|θ1) dθ =

∫
π (x|θ)π (θ|θ1) dθ.
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The density π (x, θ1|θ) can be calculated by two methods. Method 1: We have

π (x, θ1|θ)π (θ) = π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) ,

and thus

π (x, θ1|θ) =
π (x|θ)π (θ|θ1)π (θ1)

π (θ)
=

π (x|θ)π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∝ π (x|θ)π (θ|θ1)π (θ1) .

Method 2: As before, we have

π (x, θ1|θ) =
π (x|θ)π (θ|θ1)π (θ1)

π (θ)
=

π (x|θ)π (θ1|θ)π (θ)

π (θ)
= π (x|θ)π (θ1|θ)

=
π (x|θ)π (θ|θ1)π (θ1)∫

π (θ|θ1)π (θ1) dθ1
∝ π (x|θ)π (θ|θ1)π (θ1) .

Next, we calculate the order 3 densities π (x), π (θ|x, θ1), and π (x, θ1) sequentially. The density
π (x) can be calculated by two methods. Method 1 is by exploiting the expression of π (θ), so

π (x) =

∫
π (x|θ)π (θ) dθ =

∫
π (x|θ)

∫
π (θ|θ1)π (θ1) dθ1dθ

=

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθ1dθ =

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1.

Method 2 is by exploiting the expression of π (x|θ1), so

π (x) =

∫
π (x|θ1)π (θ1) dθ1 =

∫ ∫
π (x|θ)π (θ|θ1) dθπ (θ1) dθ1 =

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1.

For π (θ|x, θ1), we have

π (θ|x, θ1)π (x|θ1)π (θ1) = π (θ|x, θ1)π (x, θ1) = π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) ,

and thus

π (θ|x, θ1) =
π (x|θ)π (θ|θ1)

π (x|θ1)
=

π (x|θ)π (θ|θ1)∫
π (x|θ)π (θ|θ1) dθ

∝ π (x|θ)π (θ|θ1) .

For π (x, θ1), we have

π (x, θ1) = π (x|θ1)π (θ1) =

∫
π (x|θ)π (θ|θ1) dθπ (θ1) =

∫
π (x|θ)π (θ|θ1)π (θ1) dθ.

Then, we calculate the order 4 densities π (θ|x) and π (θ1|x) sequentially. For π (θ|x), we have

π (θ|x) = π (x|θ)π (θ)

π (x)
=

π (x|θ)
∫
π (θ|θ1)π (θ1) dθ1∫ ∫

π (x|θ)π (θ|θ1)π (θ1) dθdθ1

=

∫
π (x|θ)π (θ|θ1)π (θ1) dθ1∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝
∫

π (x|θ)π (θ|θ1)π (θ1) dθ1.

For π (θ1|x), we have

π (θ1|x) =
π (x|θ1)π (θ1)

π (x)
=

∫
π (x|θ)π (θ|θ1) dθπ (θ1)∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

=

∫
π (x|θ)π (θ|θ1)π (θ1) dθ∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝
∫

π (x|θ)π (θ|θ1)π (θ1) dθ.

Finally, we calculate the order 5 density π (θ, θ1|x) by three methods. Method 1: We have

π (θ, θ1|x)π (x) = π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1) ,
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and thus

π (θ, θ1|x) =
π (x|θ)π (θ|θ1)π (θ1)

π (x)
=

π (x|θ)π (θ|θ1)π (θ1)∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝ π (x|θ)π (θ|θ1)π (θ1) .

Method 2: We have

π (θ, θ1|x) = π (θ|x, θ1)π (θ1|x) =
π (x|θ)π (θ|θ1)∫
π (x|θ)π (θ|θ1) dθ

∫
π (x|θ)π (θ|θ1)π (θ1) dθ∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

=
π (x|θ)π (θ|θ1)π (θ1)∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝ π (x|θ)π (θ|θ1)π (θ1) .

Method 3: We have

π (θ, θ1|x) = π (θ1|x, θ)π (θ|x) = π (θ|θ1)π (θ1)∫
π (θ|θ1)π (θ1) dθ1

∫
π (x|θ)π (θ|θ1)π (θ1) dθ1∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

=
π (x|θ)π (θ|θ1)π (θ1)∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

∝ π (x|θ)π (θ|θ1)π (θ1) .

The proof is complete. 2

3 An Example

In this section, we will provide an example to illustrate the usage of Theorem 2.1. We consider the
following hierarchical normal Bayes model with two conditional levels:

π (x|θ) ∼ N (θ, 1) ,
π (θ|θ1) ∼ N (θ1, 1) ,
π (θ1) ∼ N (0, 1) .

(3.1)

Therefore,

π (x|θ) = 1√
2π

exp

[
− (x− θ)2

2

]
,

π (θ|θ1) =
1√
2π

exp

[
− (θ − θ1)

2

2

]
,

π (θ1) =
1√
2π

exp

[
−θ21

2

]
.

As described in Theorem 2.1. Let the assumptions (A1), (A2), and (A3) hold. Then we can calculate
the 16 densities in terms of the 3 known densities π (x|θ), π (θ|θ1), and π (θ1) as follows. In general,
we can only obtain the functional forms of the 16 densities. However, for the simple hierarchical
normal Bayes model, we can figure out the exact distributions of the 16 densities. They are one-,
two-, or three-dimensional normal distributions.

Before calculating the 16 densities, we provide a standard Bayesian calculus tool, that is, ym|θ ∼ N
(
θ, σ2

m

)
,

θ ∼ N
(
µ0,

σ2

n0

)
,

=⇒

 θ|ym ∼ N
(

n0µ0+mym
n0+m

, σ2

n0+m

)
,

ym ∼ N
(
µ0, σ

2
(

1
n0

+ 1
m

))
,

(3.2)

where µ0, n0, and σ2 are known.
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We first calculate the 5 densities related to x. Since x, θ, and θ1 are normal, the integrals in this
section are from −∞ to ∞. We will omit the integration limits to lighten notations. We have

π (x) =

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθdθ1

=

∫ ∫
π (x|θ)π (θ|θ1)π (θ1) dθ1dθ

=

∫
π (x|θ)

[∫
π (θ|θ1)π (θ1) dθ1

]
dθ

=

∫
π (x|θ)π (θ) dθ.

That is, π (x) is the marginal distribution of π (x|θ) and π (θ). From (3.1) and (3.2), we can easily
obtain {

π (x|θ) ∼ N (θ, 1) ,
π (θ) ∼ N (0, 2) .

Moreover, by (3.2), we have

π (x) ∼ N (0, 3) .

Therefore,

π (x) =
1√

2π
√
3
exp

(
− x2

2 · 3

)
.

For π (x|θ1), we have

π (x|θ1) =
∫

π (x|θ)π (θ|θ1) dθ,

that is, π (x|θ1) is the marginal distribution of π (x|θ) and π (θ|θ1). By (3.2), we have

π (x|θ1) ∼ N (θ1, 2) .

Hence,

π (x|θ1) =
1√

2π
√
2
exp

[
− (x− θ1)

2

2 · 2

]
.

For π (x|θ, θ1), we have

π (x|θ, θ1) = π (x|θ) ∼ N (θ, 1) .

Thus,

π (x|θ, θ1) =
1√
2π

exp

[
− (x− θ)2

2

]
.
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For π (θ, θ1|x), we have

π (θ, θ1|x) =
π (x|θ)π (θ|θ1)π (θ1)

π (x)

=

1√
2π

exp
[
− (x−θ)2

2

]
1√
2π

exp
[
− (θ−θ1)

2

2

]
1√
2π

exp
[
− θ21

2

]
1√

2π
√
3
exp

(
− x2

2·3

)
=

√
3

2π
exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2 + θ21 − x2

3

]}
∝ exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2 + θ21
]}

∝ exp

{
−1

2

[
2θ2 + 2θ21 − 2θθ1 − 2xθ

]}
= exp

{
−
[
θ2 + θ21 − θθ1 − xθ

]}
. (3.3)

It remains to show that π (θ, θ1|x) is a two-dimensional normal distribution N2 (µθ, µθ1 , σθ, σθ1 , ρ)
with appropriate parameter values. Let

c2 = 2
(
1− ρ2

)
, (3.4)

where
c =

√
2 (1− ρ2) > 0.

We have

π (θ, θ1|x) ∝ exp

{
− 1

2 (1− ρ2)

[(
θ − µθ

σθ

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
θ − µθ

σθ

θ1 − µθ1

σθ1

]}

= exp

{
− 1

c2

[(
θ − µθ

σθ

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
θ − µθ

σθ

θ1 − µθ1

σθ1

]}

= exp

{
−

[(
θ − µθ

cσθ

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
θ − µθ

cσθ

θ1 − µθ1

cσθ1

]}

= exp

{
−

[
θ2 − 2µθθ + µ2

θ

c2σ2
θ

+
θ21 − 2µθ1θ1 + µ2

θ1

c2σ2
θ1

− 2ρ

c2σθσθ1

(θθ1 − µθ1θ − µθθ1 + µθµθ1)

]}

∝ exp

{
−

[
θ2

c2σ2
θ

+
θ21

c2σ2
θ1

− 2ρ

c2σθσθ1

θθ1 +

(
−2µθ

c2σ2
θ

+
2ρµθ1

c2σθσθ1

)
θ +

(
−2µθ1

c2σ2
θ1

+
2ρµθ

c2σθσθ1

)
θ1

]}
(3.5)

Comparing (3.3) and (3.5), we find that

θ2 + θ21 − θθ1 − xθ

=
θ2

c2σ2
θ

+
θ21

c2σ2
θ1

− 2ρ

c2σθσθ1

θθ1 +

(
−2µθ

c2σ2
θ

+
2ρµθ1

c2σθσθ1

)
θ +

(
−2µθ1

c2σ2
θ1

+
2ρµθ

c2σθσθ1

)
θ1.

Comparing the coefficients of θ2, θ21, θθ1, θ, and θ1, we obtain

1
c2σ2

θ
= 1,

1
c2σ2

θ1

= 1,

− 2ρ
c2σθσθ1

= −1,

−2µθ

c2σ2
θ
+

2ρµθ1
c2σθσθ1

= −x,
−2µθ1

c2σ2
θ1

+ 2ρµθ
c2σθσθ1

= 0.

(3.6)

9
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By noting (3.4) and solving the first three equations of (3.6), we easily obtain

σθ =

√
2

3
, σθ1 =

√
2

3
, ρ =

1

2
.

Substituting the values of σθ, σθ1 , and ρ into the last two equations of (3.6), we easily obtain

µθ =
2

3
x, µθ1 =

1

3
x.

Consequently,

π (θ, θ1|x) ∼ N2

(
µθ =

2

3
x, µθ1 =

1

3
x, σθ =

√
2

3
, σθ1 =

√
2

3
, ρ =

1

2

)
.

For π (θ, θ1), we have

π (θ, θ1) = π (θ|θ1)π (θ1)

=
1√
2π

exp

[
− (θ − θ1)

2

2

]
1√
2π

exp

[
−θ21

2

]
=

1

2π
exp

{
−1

2

[
(θ − θ1)

2 + θ21
]}

∝ exp

{
−1

2

[
θ2 + 2θ21 − 2θθ1

]}
= exp

{
−
[
1

2
θ2 + θ21 − θθ1

]}
= exp

{
−

[(
θ − 0√

2

)2

+

(
θ1 − 0

1

)2

− θθ1

]}
. (3.7)

It remains to show that π (θ, θ1) is a two-dimensional normal distribution N2 (µθ, µθ1 , σθ, σθ1 , ρ)
with appropriate parameter values. Let c2 be given by (3.4). We have

π (θ, θ1) ∝ exp

{
− 1

2 (1− ρ2)

[(
θ − µθ

σθ

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
θ − µθ

σθ

θ1 − µθ1

σθ1

]}

= exp

{
− 1

c2

[(
θ − µθ

σθ

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
θ − µθ

σθ

θ1 − µθ1

σθ1

]}

= exp

{
−

[(
θ − µθ

cσθ

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
θ − µθ

cσθ

θ1 − µθ1

cσθ1

]}
. (3.8)

Comparing (3.7) and (3.8), we find that(
θ − 0√

2

)2

+

(
θ1 − 0

1

)2

− θθ1

=

(
θ − µθ

cσθ

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
θ − µθ

cσθ

θ1 − µθ1

cσθ1

.

Comparing the corresponding terms, we obtain
µθ = 0,
µθ1 = 0,

cσθ =
√
2,

cσθ1 = 1,
−2ρ

c2σθσθ1
= −1.

(3.9)

10
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By noting (3.4) and solving the last three equations of (3.9), we easily obtain

σθ =
√
2, σθ1 = 1, ρ =

1√
2
.

Consequently,

π (θ, θ1) ∼ N2

(
µθ = 0, µθ1 = 0, σθ =

√
2, σθ1 = 1, ρ =

1√
2

)
.

Now we calculate the 5 densities related to θ. For π (θ), we have

π (θ) =

∫
π (θ|θ1)π (θ1) dθ1.

That is, π (θ) is the marginal distribution of π (θ|θ1) and π (θ1). From (3.1) and (3.2), we can easily
obtain

π (θ) ∼ N (0, 2) .

Therefore,

π (θ) =
1√

2π
√
2
exp

(
− θ2

2 · 2

)
.

For π (θ|x), we have

π (θ|x) ∝
∫

π (x|θ)π (θ|θ1)π (θ1) dθ1

∝
∫

exp

[
− (x− θ)2

2

]
exp

[
− (θ − θ1)

2

2

]
exp

[
−θ21

2

]
dθ1

= exp

[
− (x− θ)2

2

] ∫
exp

{
−1

2

[
(θ − θ1)

2 + θ21
]}

dθ1

≡ exp

[
− (x− θ)2

2

]
· I1,

where

I1 =

∫
exp

{
−1

2

[
(θ − θ1)

2 + θ21
]}

dθ1 =

∫
exp

{
−1

2

[
2θ21 − 2θθ1 + θ2

]}
dθ1

=

∫
exp

{
−
[
θ21 − θθ1 +

1

2
θ2
]}

dθ1 =

∫
exp

{
−

[(
θ1 −

1

2
θ

)2

+
1

4
θ2
]}

dθ1

=

∫
exp

{
−
(
θ1 −

1

2
θ

)2

− 1

4
θ2
}
dθ1 = exp

(
−1

4
θ2
)
·
∫

exp

{
−
(
θ1 −

1

2
θ

)2
}
dθ1.

Note that the probability density function (pdf) of a normal distribution integrates to 1, that is,∫ ∞

−∞

1√
2πσ̃

exp

[
− (x− µ)2

2σ̃2

]
dx = 1

⇔
∫ ∞

−∞
exp

[
− (x− µ)2

2σ̃2

]
dx =

√
2πσ̃. (3.10)

By (3.10), we have

I1 = exp

(
−1

4
θ2
)
·
√
2π

1√
2
∝ exp

(
−1

4
θ2
)
.

11
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Therefore,

π (θ|x) ∝ exp

[
− (x− θ)2

2

]
exp

(
−1

4
θ2
)

= exp

{
−1

2

[
(x− θ)2 +

1

2
θ2
]}

∝ exp

{
−1

2

[
3

2
θ2 − 2xθ

]}
= exp

{
−3

4

[
θ2 − 4

3
xθ

]}
= exp

{
−3

4

[(
θ − 2

3
x

)2

− 4

9
x2

]}

∝ exp

{
−3

4

(
θ − 2

3
x

)2
}

= exp

{
− 1

2 · 2
3

(
θ − 2

3
x

)2
}

∼ N

(
2

3
x,

2

3

)
.

Hence,

π (θ|x) = 1
√
2π
√

2
3

exp

{
− 1

2 · 2
3

(
θ − 2

3
x

)2
}
.

For π (θ|x, θ1), we have

π (θ|x, θ1) ∝ π (x|θ)π (θ|θ1)

∝ exp

[
− (x− θ)2

2

]
exp

[
− (θ − θ1)

2

2

]
= exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2]}
= exp

{
−1

2

[
2θ2 − 2xθ − 2θ1θ + x2 + θ21

]}
∝ exp

{
−
[
θ2 − (x+ θ1) θ

]}
= exp

{
−

[(
θ − x+ θ1

2

)2

− (x+ θ1)
2

4

]}

∝ exp

{
−
(
θ − x+ θ1

2

)2
}

∼ N

(
x+ θ1

2
,
1

2

)
.

Hence,

π (θ|x, θ1) =
1√

2π 1√
2

exp

{
− 1

2 · 1
2

(
θ − x+ θ1

2

)2
}
.

For π (x, θ1|θ), we have

π (x, θ1|θ) ∝ π (x|θ)π (θ|θ1)π (θ1)

∝ exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2 + θ21
]}

∝ exp

{
−1

2

[
(x− θ)2 + 2

(
θ21 − θθ1

)]}
∝ exp

{
−1

2

[
(x− θ)2 + 2

(
θ1 −

θ

2

)2
]}

= exp

{
−

[(
x− θ√

2

)2

+

(
θ1 − θ

2

1

)2]}
. (3.11)
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It remains to show that π (x, θ1|θ) is a two-dimensional normal distribution N2 (µx, µθ1 , σx, σθ1 , ρ)
with appropriate parameter values. Let c2 be given by (3.4). We have

π (x, θ1|θ) ∝ exp

{
− 1

2 (1− ρ2)

[(
x− µx

σx

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
x− µx

σx

θ1 − µθ1

σθ1

]}

= exp

{
− 1

c2

[(
x− µx

σx

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
x− µx

σx

θ1 − µθ1

σθ1

]}

= exp

{
−

[(
x− µx

cσx

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
x− µx

cσx

θ1 − µθ1

cσθ1

]}
. (3.12)

Comparing (3.11) and (3.12), we find that(
x− θ√

2

)2

+

(
θ1 − θ

2

1

)2

=

(
x− µx

cσx

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
x− µx

cσx

θ1 − µθ1

cσθ1

.

Comparing the corresponding terms, we obtain

µx = θ, µθ1 =
θ

2
.

Moreover, 
cσx =

√
2,

cσθ1 = 1,
−2ρ

c2σxσθ1
= 0.

By noting (3.4) and solving the above three equations, we easily obtain

σx = 1, σθ1 =
1√
2
, ρ = 0.

Consequently,

π (x, θ1|θ) ∼ N2

(
µx = θ, µθ1 =

θ

2
, σx = 1, σθ1 =

1√
2
, ρ = 0

)
.

For π (x, θ1), we have

π (x, θ1) ∝ π (x|θ1)π (θ1)

∝ exp

{
−1

4
(x− θ1)

2

}
exp

{
−1

2
θ21

}
= exp

{
−
[
1

4
(x− θ1)

2 +
1

2
θ21

]}
= exp

{
−
[
1

4

(
x2 − 2xθ1 + θ21

)
+

1

2
θ21

]}
= exp

{
−
[
1

4
x2 +

3

4
θ21 − 1

2
xθ1

]}
= exp

{
−

[(
x− 0

2

)2

+

(
θ1 − 0

2/
√
3

)2

− 1

2
xθ1

]}
. (3.13)

It remains to show that π (x, θ1) is a two-dimensional normal distribution N2 (µx, µθ1 , σx, σθ1 , ρ)
with appropriate parameter values. Let c2 be given by (3.4). We have

π (x, θ1) ∝ exp

{
− 1

2 (1− ρ2)

[(
x− µx

σx

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
x− µx

σx

θ1 − µθ1

σθ1

]}

= exp

{
− 1

c2

[(
x− µx

σx

)2

+

(
θ1 − µθ1

σθ1

)2

− 2ρ
x− µx

σx

θ1 − µθ1

σθ1

]}

= exp

{
−

[(
x− µx

cσx

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
x− µx

cσx

θ1 − µθ1

cσθ1

]}
. (3.14)
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Comparing (3.13) and (3.14), we find that(
x− 0

2

)2

+

(
θ1 − 0

2/
√
3

)2

− 1

2
xθ1 =

(
x− µx

cσx

)2

+

(
θ1 − µθ1

cσθ1

)2

− 2ρ
x− µx

cσx

θ1 − µθ1

cσθ1

.

Comparing the corresponding terms, we obtain

µx = 0, µθ1 = 0.

Moreover, 
cσx = 2,
cσθ1 = 2√

3
,

−2ρ
c2σxσθ1

= − 1
2
.

By noting (3.4) and solving the above three equations, we easily obtain

σx =
√
3, σθ1 = 1, ρ =

1√
3
.

Consequently,

π (x, θ1) ∼ N2

(
µx = 0, µθ1 = 0, σx =

√
3, σθ1 = 1, ρ =

1√
3

)
.

Now we calculate the 5 densities related to θ1. For π (θ1|x), we have

π (θ1|x) =
π (x, θ1)

π (x)

∝
exp

{
−
[
1
4
x2 + 3

4
θ21 − 1

2
xθ1
]}

exp
(
−x2

6

)
∝ exp

{
−
[
3

4
θ21 − 1

2
xθ1

]}
= exp

{
−3

4

[
θ21 − 2

3
xθ1

]}
∝ exp

{
− 1

2 · 2
3

[
θ1 −

1

3
x

]2}

∼ N

(
1

3
x,

2

3

)
.

Hence,

π (θ1|x) =
1

√
2π
√

2
3

exp

{
− 1

2 · 2
3

[
θ1 −

1

3
x

]2}
.

For π (θ1|θ), we have

π (θ1|θ) ∝ π (θ|θ1)π (θ1)

∝ exp

[
− (θ − θ1)

2

2

]
exp

[
−θ21

2

]
= exp

{
−1

2

[
(θ − θ1)

2 + θ21
]}

= exp

{
−1

2

[
2θ21 − 2θθ1

]}
= exp

{
−
[
θ21 − θθ1

]}
∝ exp

{
−
(
θ1 −

θ

2

)2
}

∼ N

(
θ

2
,
1

2

)
.
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Another method to determine the distribution of π (θ1|θ) is by utilizing the Bayesian tool (3.2). We
have {

π (θ|θ1) ∼ N
(
θ1,

1
1

)
,

π (θ1) ∼ N
(
0, 1

1

)
.

=⇒ θ1|θ ∼ N

(
1 · 0 + 1 · θ

1 + 1
,

1

1 + 1

)
= N

(
θ

2
,
1

2

)
.

Hence,

π (θ1|θ) =
1√

2π 1√
2

exp

{
− 1

2 · 1
2

[
θ1 −

θ

2

]2}
.

For π (θ1|x, θ), we have

π (θ1|x, θ) = π (θ1|θ) =
1√

2π 1√
2

exp

{
− 1

2 · 1
2

[
θ1 −

θ

2

]2}
∼ N

(
θ

2
,
1

2

)
.

For π (x, θ|θ1), we have

π (x, θ|θ1) = π (x|θ)π (θ|θ1)

∝ exp

[
− (x− θ)2

2

]
exp

[
− (θ − θ1)

2

2

]
= exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2]}
= exp

{
−1

2

[
((x− θ1)− (θ − θ1))

2 + (θ − θ1)
2]}

= exp

{
−1

2

[
(x− θ1)

2 + 2 (θ − θ1)
2 − 2 (x− θ1) (θ − θ1)

]}
= exp

{
−

[(
x− θ1√

2

)2

+

(
θ − θ1

1

)2

− (x− θ1) (θ − θ1)

]}
. (3.15)

It remains to show that π (x, θ|θ1) is a two-dimensional normal distribution N2 (µx, µθ, σx, σθ, ρ)
with appropriate parameter values. Let c2 be given by (3.4). We have

π (x, θ|θ1) ∝ exp

{
− 1

2 (1− ρ2)

[(
x− µx

σx

)2

+

(
θ − µθ

σθ

)2

− 2ρ
x− µx

σx

θ − µθ

σθ

]}

= exp

{
− 1

c2

[(
x− µx

σx

)2

+

(
θ − µθ

σθ

)2

− 2ρ
x− µx

σx

θ − µθ

σθ

]}

= exp

{
−

[(
x− µx

cσx

)2

+

(
θ − µθ

cσθ

)2

− 2ρ
x− µx

cσx

θ − µθ

cσθ

]}
. (3.16)

Comparing (3.15) and (3.16), we find that(
x− θ1√

2

)2

+

(
θ − θ1

1

)2

− (x− θ1) (θ − θ1) =

(
x− µx

cσx

)2

+

(
θ − µθ

cσθ

)2

− 2ρ
x− µx

cσx

θ − µθ

cσθ
.

Comparing the corresponding terms, we obtain

µx = θ1, µθ = θ1.

Moreover, 
cσx =

√
2,

cσθ = 1,
−2ρ

c2σxσθ
= −1.
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By noting (3.4) and solving the above three equations, we easily obtain

σx =
√
2, σθ = 1, ρ =

1√
2
.

Consequently,

π (x, θ|θ1) ∼ N2

(
µx = θ1, µθ = θ1, σx =

√
2, σθ = 1, ρ =

1√
2

)
.

For π (x, θ), we have

π (x, θ) = π (θ|x)π (x)

=
1

√
2π
√

2
3

exp

{
− 1

2 · 2
3

(
θ − 2

3
x

)2
}

1√
2π

√
3
exp

(
− x2

2 · 3

)

=
1

2π
√
2
exp

[
−3

4

(
θ − 2

3
x

)2

− x2

6

]

∝ exp

{
−

[
3

4

(
θ − 2

3
x

)2

+
x2

6

]}
= exp

{
−
[
x2

2
+

θ2

4
3

− xθ

]}

= exp

{
−

[(
x− 0√

2

)2

+

(
θ − 0

2√
3

)2

− xθ

]}
. (3.17)

It remains to show that π (x, θ) is a two-dimensional normal distribution N2 (µx, µθ, σx, σθ, ρ) with
appropriate parameter values. Let c2 be given by (3.4). We have

π (x, θ) ∝ exp

{
− 1

2 (1− ρ2)

[(
x− µx

σx

)2

+

(
θ − µθ

σθ

)2

− 2ρ
x− µx

σx

θ − µθ

σθ

]}

= exp

{
− 1

c2

[(
x− µx

σx

)2

+

(
θ − µθ

σθ

)2

− 2ρ
x− µx

σx

θ − µθ

σθ

]}

= exp

{
−

[(
x− µx

cσx

)2

+

(
θ − µθ

cσθ

)2

− 2ρ
x− µx

cσx

θ − µθ

cσθ

]}
. (3.18)

Comparing (3.17) and (3.18), we find that(
x− 0√

2

)2

+

(
θ − 0

2√
3

)2

− xθ =

(
x− µx

cσx

)2

+

(
θ − µθ

cσθ

)2

− 2ρ
x− µx

cσx

θ − µθ

cσθ
.

Comparing the corresponding terms, we obtain

µx = 0, µθ = 0.

Moreover, 
cσx =

√
2,

cσθ = 2√
3
,

−2ρ
c2σxσθ

= −1.

By noting (3.4) and solving the above three equations, we easily obtain

σx =
√
3, σθ =

√
2, ρ =

√
2

3
.
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Consequently,

π (x, θ) ∼ N2

(
µx = 0, µθ = 0, σx =

√
3, σθ =

√
2, ρ =

√
2

3

)
.

Finally, for π (x, θ, θ1), we have

π (x, θ, θ1) = π (x|θ)π (θ|θ1)π (θ1)

=
1√
2π

exp

[
− (x− θ)2

2

]
1√
2π

exp

[
− (θ − θ1)

2

2

]
1√
2π

exp

[
−θ21

2

]
= (2π)−

3
2 exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2 + θ21
]}

∝ exp

{
−1

2

[
(x− θ)2 + (θ − θ1)

2 + θ21
]}

. (3.19)

It remains to show that π (x, θ, θ1) is a three-dimensional normal distribution N3 (µ,Σ) with
appropriate parameter values, where

µ = (µx, µθ, µθ1)
′ , Σ−1 = A = (aij)3×3 .

Let x = (x, θ, θ1)
′. We have

π (x, θ, θ1) ∝ exp

{
−1

2
(x− µ)′ Σ−1 (x− µ)

}
= exp

{
−1

2
(x− µ)′ A (x− µ)

}
. (3.20)

Comparing (3.19) and (3.20), we find that

(x− µ)′ A (x− µ) = (x− θ)2 + (θ − θ1)
2 + θ21

= x2 + 2θ2 + 2θ21 − 2xθ − 2θθ1

= (x, θ, θ1)

 1 −1 0
−1 2 −1
0 −1 2

 x
θ
θ1

 .

Comparing the corresponding terms, we obtain

µ = (0, 0, 0)′ ,

Σ−1 = A =

 1 −1 0
−1 2 −1
0 −1 2

 ,

Σ = A−1 =

 1 −1 0
−1 2 −1
0 −1 2

−1

=

3 2 1
2 2 1
1 1 1

 .

4 Conclusions

There are 19 densities involved in the hierarchical Bayes model with two conditional levels, in which
the 3 densities π (x|θ), π (θ|θ1), and π (θ1) are known densities. Fig. 1 provides these 19 densities.
Note that 4 of the 16 unknown densities are obviously represented by the 3 known densities.
The remaining 12 unknown densities, their dependence densities, and the order of calculation are
summarized in Table 1. After that, we have written the 16 unknown densities in terms of the 3
known densities in Theorem 2.1 which is very handy for practitioners and researchers interested
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in the hierarchical Bayes model with two conditional levels. Finally, we apply Theorem 2.1 to a
hierarchical normal Bayes model with two conditional levels and obtain the functional forms of the
16 densities. Moreover, for the simple hierarchical normal Bayes model, we figure out the exact
distributions of the 16 densities, which are one-, two-, or three-dimensional normal distributions.
In other hierarchical Bayes models, one may not obtain analytical expressions of the densities, then
one should be able to derive the densities numerically.
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