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ABSTRACT 
 

The prevalence of obesity, metabolic syndrome and diabetes has been increasing rapidly 
worldwide. These are a group of metabolic disorders characterized by a chronic hyperglycaemic 
condition resulting from defects in insulin secretion, insulin action or both. The control of body 
weight and blood glucose concentrations depends on the exquisite coordination of the function of 
several cells, organs and tissues. Underlying mechanisms of obesity and insulin resistance remain 
uncertain. Adipose tissue is composed of heterogeneous cell types. Immune cells within adipose 
tissue also likely contribute to systemic metabolic processes. Increased production of local and 
systemic adipokines and cytokines, polarization of macrophages, T helper subtype changes could 
contribute to pathologies linking obesity to diabetes, both by decreasing insulin sensitivity, by 
compromising β-cell function and disturbing adipose tissue metabolism and distribution. Tissue 
oxygen (O2) levels, hypoxia inducible factor (s) (HIFs) secretion differences regulate the plasticity 
of macrophages and the polarization of macrophages controls functionally divergent processes in 
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cells. A hypoxic and inflammatory phenotype has been reported in adipose tissue during obesity. 
Therefore, the present review focuses HIFs-mediated effects of hypoxia in adipocyte inflammation 
and macrophage polarization associated with obesity pathogenesis. 
 

 
Keywords: Obesity; pathogenesis; hypoxia inducible factors; inflammation. 
 
1. INTRODUCTION  
 
The incidence of obesity has been dramatically 
increasing worldwide in both children and adults. 
The central role of obesity that increase the risk 
of various diseases including type 2 diabetes, 
fatty liver disease, atherosclerosis, degenerative 
disorders and even some cancer types also 
highlights its importance for the public health 
[1,2]. 
 
During the last decade, the link of obesity with 
inflammation was clarified by the increased 
levels of the inflammatory mediators and 
activation of inflammatory signalling pathways in 
obesity [3,4]. Hypoxia could be the answer of 
what induces the chronic inflammation of adipose 
tissue (AT) in obesity [5]. Hypoxia in obese state 
may also account the ischemia/reperfusion injury 
in the AT [6]. The adaptation of cells to hypoxia 
is mainly regulated by hypoxia-inducible factors 
(HIFs). Therefore, in this review, we aimed to 
discuss the HIF signalling thought to be involved 
in the inflammation, insulin sensitivity, glucose 
and lipid metabolism in adipose tissue 
associated with obesity pathogenesis. 
 
2. HYPOXIA IN ADIPOSE TISSUE AND 

HYPOXIA-INDUCIBLE FACTORS  
 
Chronic, excessive energy intake in obesity, 
results in AT expansion especially white adipose 
tissue expansion to increase storage of lipids 
[7,8]. Despite the expansion, its supporting 
vasculature does not meet the demand of blood 
because neither the proportion of the cardiac 
output or the extent of the blood flow to the tissue 
is increased [9-12]. The expanded adipocytes 
also represent larger diameters than the normal 
diffusion distance for the oxygen [13]. It is also 
emphasized that a relative adipocyte hypoxia 
occurs as a result of increased oxygen 
consumption due to uncoupled mitochondrial 
respiration during even early in the course of 
high fat diet-induced obesity [14]. Hypoxia-
inducible factors (HIFs) play important role in 
cellular adaptation to hypoxia. Three members of 
the family are described as HIF-1, HIF-2 and 
HIF-3. They have two subunits: O2-sensitive α-
subunit and constitutively expressed β-subunit 

[15]. Especially, HIF-1α and HIF-2α play 
important regulator role after heterodimerization 
with β-subunit by transcription of target genes in 
response to hypoxia. Although there is limited 
knowledge about HIF-3α, it is postulated that a 
negative regulatory role of HIF-3α on HIF-
mediated transcription [16]. In normoxia, oxygen-
dependent hydroxylation of proline residues of 
HIF-1α or HIF-2α in by three prolyl hydroxylases 
(PHD1-3, also known as HIF prolyl 4-hydroxylase 
(P4H) isoenzymes) makes it ready for 
polyubiquitination by the von Hippel-Lindau 
tumour suppressor E3 ligase complex [17-19].  
Afterwards, the marked HIFα becomes a target 
for proteasomal degradation [20]. In addition, 
also oxygen-dependent hydroxylation of 
asparagyl residues of HIF-1α or HIF-2α by factor-
inhibiting HIF reduces the transcriptional activity 
of HIF [21]. However, in hypoxia, the diminished 
level of oxygen stabilizes HIF-1α protein which 
results in dimerization with HIFβ. Then HIF 
heterodimers drive the role on gene transcription 
involved in adaptation to hypoxic stress [22]. 
Despite HIF-1α and HIF-2α target many common 
gene expression, HIF-1α is rather associated 
with glycolytic gene expression [23,24] and HIF-
2α-specific target genes are involved in the 
regulation of function and/or differentiation of 
stem cell [25], cell cycle progression of renal 
carcinoma cells [26] and lipid metabolism [27]. 
 
It is well known that HIFs are main regulators of 
metabolism and energy homeostasis. Rahtu-
Korpela et al., using HIF P4H  isoenzyme 2–
deficientmice (Hif-p4h-2–deficient mice), reported 
that glucose and lipid metabolism were improved 
and inflammation were decreased in the adipose 
tissue of the mice than their littermates. The 
levels of serum total cholesterol and HDL and 
LDL+VLDL cholesterol and de novo lipogenesis 
were also found to be decreased in theHif-p4h-
2–deficient mice. The improvement in the lipid 
metabolism seems to be related to increased 
mRNA levels of the lipolysis markers (i.e. 
hormone-sensitive lipase and patatin-like 
phospholipase domain-containing protein 2) in 
the adipose tissue and decreased mRNA levels 
of the lipogenic and/or fatty acid synthesis 
markers (i.e. sterol regulatory element–binding 
protein 1c and its targets acetyl-CoA carboxylase 
α and fatty acid synthase) in the liver. The latter 
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finding could also be explained by the increased 
mRNA level of insulin receptor substrate-2 [27] 
which is a targetfor HIF-2α in theliver [28]. 
Because, insulin receptor substrate protein-2 
(IRS-2) is closely linked to lipid metabolism and 
knockdown of IRS-2 was found to result in 
theincreasedexpression of lipogenicgenessuch 
as sterol regulatory element–binding protein 1c 
and and fatty acid synthase [29]. Ramakrishnan 
et al. offered further collaborative evidence by 
demonstrating that extensive liver specific HIF-
2α stabilization results in the increased hepatic 
and serum cholesterol levels [30] (Fig. 1). 
 
HIF-1α, -2α and -3α mRNA expressions have 
been shown to be increased after prolonged 
fasting in northern elephant seal pups. The 
mRNA expression of HIF-1α and -2α was 
increased 3- to 5-fold in adipose and muscle, 
whereas that of HIF-3α was increased 5-fold only 
in adipose of the elephant seal after 7 weeks of 
fasting. The only HIF-2α protein was detected in 
the nuclear fractions from adipose and muscle of 
the elephant seal. Therefore, these findings 
indicate that HIF-2α plays the main role in the 
up-regulation of genes involved in the metabolic 
adaptation during fasting [31]. 
 
HIF-3 gene has many variants with different 
functions [32]. HIF-3α and HIF-2α gene 
expression was reported to be induced and that 
of HIF-3α was also regulated by HIF-2α during 
3T3-L1 adipose differentiation. Moreover, ectopic 
expression of HIF-3α in the 3T3-L1 cells was 
found to be involved in the induction of some 
adipocytes-related genes and acceleration of 
adipogenesis [33]. Also role of HIFs could be 
differing in adipocyte differentiation, HIF-1α 
levels are decreased during differentiation 
process of preadipocytes whereas HIF-2 α and 
HIF-3α expressions are increased in mature 
adipocytes [33,34]. 
 
3. HIFs ARE THE LINK IN BERMUDA 

TRIANGLE (HYPOXIA-INFLAMMATION-
INSULIN RESISTANCE) OF OBESITY 

 
AT has not been any more a simple fat storage 
organ after Hotamisligil et al. reported a link 
between in inflammatory cytokine TNF-α and 
insulin resistance in obese rats [35]. Afterwards, 
participation of macrophage accumulation in AT 
of obese mice was shown closely linked with 
TNF-α and also iNOS and IL-6 expression 
[36].Later, the realized commonalities of 
interaction between other effectors of immune 
system and adipocytes make closer the link of 

metabolism with inflammation [1]. AT 
inflammation is now well known as a major 
contributor to insulin resistance in which 
characterizes obesity and type 2 diabetes [37]. 
Under obese conditions, adipose tissue could 
become oxygen-deficient or hypoxic and then 
hypoxia induced signalling pathways start to take 
part in local adipose tissue and systemic 
crosstalk. 
 

4. THE ROLE OF HIFs IN HYPOXIA 
INDUCED AT INFLAMMATION 

 
The hypoxia of AT in obesity can induce 
inflammation by the effects on gene expression. 
HIF-1α, master regulator of hypoxia, partly drives 
this effect by induction of target gene expression 
(i.e. plasminogen activator inhibitor-1 (PAI-1), 
macrophage Migration-Inhibition Factor (MIF), 
Inducible Nitric Oxide Synthase (iNOS)) in 
adipocytes [38] (Fig. 1). 
 

In genetically modified animal models, the role of 
HIFs in hypoxia-induced inflammation of AT is 
also questioned. It has been found that hypoxia-
induced AT inflammation was decreased with the 
improvement in glucose tolerance and insulin 
sensitivity in HIF-1α knockout mice [14,39].  By 
contrast, mice with genetic deletion of HIF-2α 
have shown increased inflammation in AT with 
the impairment in glucose and insulin sensitivity 
[14]. Interestingly, mice with both genetic 
deletion of HIF-1α and HIF-2α has shown the 
phenotypic characteristics similar with HIF-1α 
knockout mice [14]. It seems to be beneficial 
effects of HIF-2α could be seen with counter-
regulating the deleterious effects of HIF-1α but 
not alone. AT inflammation by hypoxia is closely 
linked with insulin resistance and glucose 
intolerance [40]. But the relationship between 
HIF-1α and insulin seems to be interdependent. 
Because insulin can also induce HIF-1α 
expression in adipocytes especially during 
adipocyte differentiation [41]. Rahtu-Korpela et 
al. showed that Hif-p4h-2–deficient mice, 
whether fed normal chow or a high-fat diet, had 
less adipose tissue inflammation, increased insulin 
sensitivity and improved glucose tolerance than 
their littermates [27]. The latter would be influenced 
by various factors including increased insulin 
sensitivity and higher levels of glucose 
transporters and glycolysis enzymes in their 
skeletal muscle, adipose tissue and heart 
through the stabilization of HIF-1α [27,42]. These 
beneficial effects are also obtained by oral 
administration of FG-4497 (HIF prolyl hydroxylase 
enzyme inhibitor) to wildtypemice [27] (Fig. 1). 
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Fig. 1. Schematic diagram of HIF signalling thought to be involved in the inflammation, insulin 

sensitivity, glucose and lipid metabolism in adipose tissue 
 
Adipokines are proteins that are secreted from 
adipocytes [43]. Especially, after the discovery of 
leptin and its increased plasma levels in the 
obesity has led to focuse on the effects of 
secretion of such protein signals in AT [5,43]. 
Later, the plasma levels of some other 
adipokines have also found increased (i.e. 
resistin, apelin) or decreased (adiponectin) in a 
state of inflammation such as in obesity [44-47]. 
It has been shown that hypoxia stimulates leptin 
and apelin expression in adipocytes through HIF-
1α-dependent manner [44-50]. In HIF-1α 
knockout mice, the plasma levels of resistin and 
adiponectin have found to be decreased and 
increased, respectively [14] (Fig. 1). 
 
5. HIFs EFFECT ON INTRACELLULAR 

SIGNALLING AND SECRETION OF 
INSULIN 

 
HIF-1α has some deleterious effects on 
intracellular signalling pathway of insulin. Akt is 
the downstream of insulin signalling pathway and 
nitric oxide (NO) can impair this process by 
causing nitrosylation of Akt [51]. It has been 
reported that HIF-1α knockout mice fed with 
high-fat diet had lower production of NO which 
resulted in decreased Akt nitrosylation but 
increased Akt phosphorylation [14]. The other 

important node in insulin signalling pathway is 
PI3K [44]. It has been shown that HIF-1α 
activation by hypoxia, adipogenesis or insulin is 
required the PI3K/Akt pathway [41]. 
 
HIF-1α has not only deleterious effects on insulin 
sensitivity or insulin signalling pathway but also 
changes insulin secretion through adiponectin-
glucagon-like peptide-1 pathway [39]. Because, 
glucose tolerance has been found to be 
improved in adipocyte specific HIF-1α knockout 
mice due to increased adiponectin serum     
levels which stimulates glucagon-like peptide-1 
secretion [39]. 
 
6. HYPOXIA CONTROLS MACROPHAGE 

DIFFERENTIATION WITH HIFs IN AT 
 
Hypoxia could initiate macrophage infiltration into 
adipose tissue [8]. AT macrophages have 
characterizes of proinflammatory (M1 or 
classically activated) and anti-inflammatory (M2 
or alternative activated) phenotypes. Hypoxia 
also play important role linked with polarization of 
macrophages to M1 phenotype in AT of obese 
animals [52,53]. This effect is partly HIF-1α 
dependent in AT [54]. This phenotypic switch is 
also important for NO production in macrophages 
and oppositely orchestrated by HIF-1α and -2α. 
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Although NO production is increased by HIF-1α 
via iNOS expression in M1 macrophages, that is 
decreased by HIF-2α with Arginase 1 expression 
in M2 macrophages [52,55-57]. Arginase 1 
competes for L-arginine with iNOS to produce 
ornithine and urea instead of NO [58]. The 
difference in phenotypic profile of macrophages 
(M1 or M2) also has distinct metabolic pathway 
choice especially on glucose and lipid 
metabolism [59]. For example, M1 macrophages 
choice for rapid energy requirement is an 
anaerobic pathway like glycolysis such as in 
hypoxic environment, but that for tissue 
remodelling and repair is provided by fatty acid 
oxidation in M2 macrophages [59,60]. The 
macrophage phenotype which is induced by 
hypoxia in obesity play important regulatory role 
on insulin resistance [59]. Although M1 
macrophages involved in inflammation and 
insulin resistance, M2 macrophages promote 
insulin sensitivity and have preventive role in 
inflammation of AT [59]. Moreover, AT 
inflammation and insulin sensitivity has been 
found closely linked with highly expression of 
HIF-2α in the M2 macrophages of AT in obese 
mice [61] (Fig. 1). However, the HIF-2α in AT M2 
macrophage-specific effect on whole body insulin 
sensitivity needs to be clarified [52]. 
 

7. CONCLUSION 
 
Obesity is a complex disorder which also 
predisposes subjects to other diseases including 
type 2 diabetes. Inflammation is the common key 
feature in both diseases. Evidence exists that the 
inflammation could be induced by hypoxia or vice 
versa. A hypoxic and inflammatory phenotype 
has been reported in adipose tissue during 
obesity. The cellular response to hypoxia is 
principally regulated by HIFs. Therefore, HIFs-
mediated dual effects of hypoxia in adipocyte 
inflammation and macrophage polarization 
associated with obesity pathogenesis would 
continue to be important part of the next research 
topics. 
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