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ABSTRACT 
 

The morbidity and mortality rate is reduced by premature and exact diagnosis of melanoma, which 
is the deadliest type of skin cancer. Timely identification of melanoma needs extremely complex 
and subjective test and laboratory samples. It is not insignificant even for experienced 
dermatologists to identify, so lot of concentration must be given. Finding the difference between 
melanoma and mole is also an issue in the accuracy of clinical diagnosis of melanoma. Especially, 
early diagnosis of cutaneous melanoma is very hard for experienced dermatologists. Even though 
a lot of advanced imaging techniques and clinical diagnostic algorithms such as dermoscopy and 
the ABCD rule of dermoscopy respectively are available, clinical diagnosis of melanoma becomes 
very challenging. The accuracy is an issue of distress (estimated to be about 75--85%) especially 
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with oblique pigmented lesions. Quantitative and objective evaluation of the skin lesion is achieved 
by the above methods with respect to the subjective clinical assessment. An effective diagnosis 
can be achieved by reducing the viewer variability’s found in dermatologists' examinations. In order 
to improve some of existing methods and budding new techniques to ease accurate, fast and 
reliable diagnosis of cutaneous melanoma. In this paper different types diagnostic system of 
melanoma namely, preprocessing feature extraction, feature selection and classification is 
explained. The results of feature selection were optimized from advanced classes of classification 
techniques; namely, Two weighted k-nearest neighbor (k-NN) classifiers (k = 1, 30), a decision tree 
(DT), and the Random Forest (RF) algorithm are employed. Support Vector Machine has been very 
effective in computer-based melanoma diagnosis studies in the literature. 
 

 
Keywords: Classification; composite biomarkers; cutaneous melanoma; dermoscopy and feature 

selection. 
 
1. INTRODUCTION 
 
Skin is the very sensitive and sensory part of the 
body that acts as protective layer of our body 
against the environmental pollutions. Skin acts 
as regulator of the human body temperature and 
transmitter of the sensation feelings to the brain. 
Melanoma is a Skin cancer which is not 
common disease such as other skin cancers 
types. This is a very dangerous disease and 
anyone can get melanoma at any time. It begins 
in the melanocytes which are in our skin. This 
cancer has some other names such as 
malignant melanoma and cutaneous melanoma. 
But some melanomas do not make melanin and 
can appear pink, tan, or even white. Melanomas 
can occur anywhere on the skin, but more likely 
to start on the men’s trunk and on the women’s 
legs. Melanoma is almost curable in its early 
stages like basal cell and squamous cell 
cancers. But it is easy to spread to other parts of 
the body if not caught early unlike basal or 
squamous cell cancer. Rossi et al. [1] have 
demonstrated that  Cutaneous Melanoma (CM) 
is a complex multifactorial disease because of 
both environmental and genetic factors                     
are involved in this cancer manifestation [1].             
CM is serious neoplasm, derived from 
melanocytes, that accounts for most skin cancer 
deaths.  
 
The complexity of cellular metabolism and 
regulatory pathways obstructs the formulation of 
melanoma mechanism as it has been shown by 
Dummer et al. [2]. Thus, though the derivation of 
gene signatures for various cancers, e.g., breast 
or colon cancer exist, a similar progress remains 
mysterious for malignant melanoma. Potentially 
this could be attributed to the intricate nature of 
the molecular basis of CM, which requests 
neatly stratified epidemiological cohorts to 
address effectively the issue of the high 

heterogeneity of the disease. In any case, 
genomic studies are limited by the shortage of 
similar melanoma cohorts, collecting and 
maintaining frozen tumor tissue thus rendering 
gene expression profiling studies of melanoma 
relatively scarce. 
 
Melanoma is the most destructive and deadly 
form of skin cancer. Jemal et al. [3] have 
revealed that distant metastases Patients have a 
five-year survival rate of 16% and a median 
survival of four to six months. Until very recently, 
melanoma has been identified by the 
chemotherapy and other therapeutic attempts.  
However, the discovery that 40%–50% of 
melanomas harbor activating BRAF mutations 
as shown by Flaherty et al. [4] prompted the 
development of selective BRAF inhibitors. 
Sosman et al. [5] have monted that the first 
specific ones were the lead compound 
PLX4720, and the pharmacokinetically superior 
PLX4032/vemurafenib [6]. In order to identify 
genes that confer resistance to a melanoma 
drug called PLX-4720 is generally used. Drugs 
of this type work well in patients whose 
melanoma cells have a mutation in the BRAF 
gene, but cancer cells that survive the treatment 
can grow into new tumours, allowing the cancer 
to recur.  
 
A great example of appropriate melanoma 
models at different steps of preclinical 
development is the extraordinarily quick bench-
to-bedside history of this drug. Oncogenic BRAF 
with PLX4720 or PLX4032 resulted is Targeted 
which results inhibition of growth and invasion of 
three-dimensional melanoma spheroids into a 
collagen matrix and causes tumor regression of 
melanoma xenografts without evidence of 
toxicity [6]. This was mirrored in phase II and 
phase III patient trials and has finally lead FDA-
approval of vemurafenib; however, despite these 
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unprecedented response rates, rapid onset of 
resistance is a major issue as it has been shown 
by Chapman et al. [7]. 
 
Melanoma model system has a vital property is 
that Reiteration of their proliferative, migratory, 
and invasive properties of melanoma cells. The 
selection of the model system which is used to 
study melanoma cell has the capability to retain 
features of the primary tumor can as well as 
tumor growth. Winnepenninckx et al. have 
shown that [8] genomic studies and gene 
expression profiling studies of melanoma are 
limited by the lack of similar melanoma cohorts, 
collecting and maintaining frozen tumor tissue 
[8]. In [8], Winnepenninckx et al studied patients 
to identify 254 genes, which expression was 
related with metastatic dissemination of 
cutaneous melanomas. Lately, Raskin et al. [9] 
used transcriptome profiling of primary 
melanomas, metastases, and normal skin 
samples. They revealed that the transcription 
factor HMGA2, previously unrecognized in 
melanoma pathogenesis, is significantly up-
regulated in primary melanoma and metastases. 
Many significant emerging biological pathways 
and gene targets are identified in melanoma and 
reported by Dutton-Regester K. and N. K. 
Hayward [10]. 
 
Ogorzałek et al. [11] have revealed that the 
human interpretation of image content can be 
subjective and superior programmed techniques 
are used in the diagnostic process. In this 
context, expert computer systems have been 
proposed as alternatives to the naked-eye 
expert prediction. The extracted dermoscopy 
image features are associated with color in 
various color spaces (RGB, HIS, CIELab) and 
are used for automated lesion characterization 
[12]. Other common features are associated with 
asymmetry and border that also used for 
automated lesion characterization. The 
statistical and advanced classification methods 
like support vector machines [13] and neural 
network [14] have also been applied. Korotkov 
et al. [15] have presented a comprehensive 
review of image analysis techniques and 
computer based systems used for the early 
detection of CM appear. 
 
So, the final goal is to provide a holistic 
description of the disease through the inter-
connections of predictive models which are 
defined at different scales into systemic 
networks. This survey is used to study the 
associate macroscopic CM disease descriptors, 

i.e., imaging features from dermoscopic 
examinations, and low-level biological 
information, i.e., gene expression, to CM 
disease status and compare their information 
content. Though several numbers of methods 
have been proposed based on image analysis 
and existing methods for the diagnosis of 
melanoma lesions using notions from the 
traditional visual inspection, the ultimate goal is 
the derivation of a compressed set of imaging 
features, which filters out most of the confusing 
part from the initial imaging descriptor set. In 
addition, the resulting compact set of imaging 
features would be characterized by reduced 
computational cost. However, it is also important 
to consider issues of the existing methods with 
the factors, such as ease of use, data 
interpretation, cost, and applicability issues, 
such as genetic manipulation and drug delivery, 
when selecting a model system. Nimunkar et al. 
[16] applied wavelet transform with pyramid-
structure on a set of 28 images to differentiate 
melanoma from dysplastic nevi. A vector of 34 
features is formed by the decomposition of 
luminance color channel into three levels and 
different statistical ratios such as energy, 
entropy, etc. This was ultimately reduced to         
five features using statistical analysis. 
Patwardhan et al. [17] proposed an adaptive 
wavelet-based tree-structured method on a set 
of 60 images for classification of melanoma. The 
average energy, maximum energy and fractional 
energy ratios were used, where a vector 
comprising 231 features is created by the 
decomposition of luminance image into three 
levels. Then, a bimodal distribution was applied 
to select those features through statistical 
analysis based on population mode. As a result, 
the process yielded five optimal features. 
 
Moreover, Garnavi et al. [18] have proposed a 
wavelet-based texture analysis method for 
classification of melanoma. The method applies 
tree - structured wavelet transform on different 
color channels of red, green, blue and 
luminance of dermoscopy images, and employs 
various statistical measures and ratios on 
wavelet coefficients. Feature extraction and a 
two-stage feature selection method, based on 
entropy and correlation were applied to a train 
set of 103 images. The resultant feature subsets 
were applied to four different classifiers: support 
vector machine, random forest, logistic model 
tree and hidden naive bayes to classify 
melanoma in a test set of 102 images, which 
resulted in an accuracy of 88.24% and ROC 
area of 0.918. 
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Manousaki et al. [19] have used an approach 
that has parameters of geometry, color and   
color texture as independent covariates for   
selecting   melanoma   from   melanocytic   nevi.                       
For early melanoma diagnosis, experienced 
dermatologists have an accuracy of 64-80% 
using clinical diagnostic criteria, usually the 
ABCD rule, while automated melanoma 
diagnosis systems are still considered to be 
experimental and serve as adjuncts to the 
naked- eye expert prediction. In an attempt early 
melanoma diagnosis establishes a mathematical 
model with a melanoma probability and it is used 
to develop an image processing program with 
the aim to separate melanoma from melanocytic 
nevi. 
 

In the work of Ganster et al. [20], a melanoma 
recognition system that involves image 
processing, segmentation, feature calculation 
and selection, as well as k-NN classification        
has been presented. A system for the 
computerized analysis of images obtained from 
epiluminescence microscopy (ELM) has been 
developed to enhance the early recognition of 
malignant melanoma. As an initial step, several 
basic segmentation algorithms together with a 
fusion strategy are used to find the binary mask 
of the skin lesion. A shape and radiometric 
features as well as local and global parameters 
are calculated to describe the malignancy of a 
lesion. Feature selection is performed by the 
application of statistical feature subset selection 
methods. The final kNN classification delivers a 
sensitivity of 87% with a specificity of 92%. In 
addition, Alcón et al. [21] also have presented 
an automatic imaging system that combines the 
outcome of the image classification with context 
knowledge such as skin type, age, gender to 
improve the classification accuracy. Malignant 
and benign lesions are classified through an 
automatic system for inspection of pigmented 
skin lesions. A personal risk factor is calculated 
by the image processing system for feature 
extraction, classification, and patient-related 
data decision support machinery. It has been 
shown that our algorithm is capable of recreating 
controlled lighting conditions and correcting for 
uneven illumination. A robust segmentation 
algorithm has been developed. As a result, the 
features are scale and rotation invariant. 
Therefore, the distance at which the digital 
image was taken is of no significant importance 
as long as the size of the feature of interest can 
be resolved on an imaging device. 
 

Tittmann et al. [22] have developed a novel two-
frequency approach for noninvasive evaluation 

of cancerous tissue with optimum depth and 
resolution. Thickly sliced tissue detects the 
relative attenuation (C-scan mode scanning) 
difference with relatively limited resolution by the 
usage of 50 MHz frequencies. Thus, suspect 
zones can be identified according to a 
quantitative criterion. The selection of suspect 
zones is used for preparation of thin, transversal 
slices from within the original thick slices. A 
very-high-resolution (1-µm) cell is obtained at 
around 600 MHz on these transversal sections 
and adjacent sections are prepared for 
histological study in parallel. The technique's 
feasibility and potential are demonstrated on 
both normal and cancerous (melanoma) skin 
tissue. Specimens isotropy is experimentally 
verified to ensure that conditions were coherent 
for use of a 5-layer, angular spectrum model 
made to simulate longitudinal velocity that is 
evaluated from semi quantitative V (z) data. 
 

Moreover, Rahman et al. [23] have reported that 
the automated melanoma recognition of the 
dermoscopic images based on image retrieval is 
done by content and multiple expert fusion. In 
this context, the ultimate aim is to support the 
decision making by retrieving and displaying the 
relevant past cases as well as predicting the 
image categories (e.g., melanoma, benign and 
dysplastic nevi) by combining outputs from 
different classifiers. However, the most 
challenging aspect in this domain is detection of 
a lesion among the healthy surrounding skin and 
the lesion-specific local image features is 
extracted. A lesion is detected through threshold 
-based segmentation method on the intensity 
images generated from two different schemes. 
For the fusion-based image retrieval and 
classification, the lesion-specific local color and 
texture features are extracted and represented 
in the form of the mean and variance–
covariance of color channels and in a combined 
feature space. The performance is evaluated by 
using both the precision-recall and classification 
accuracies. In order to do cancer research, 
clinical data (age, sex, size, or grade of tumor 
size, image extracted features) can be 
incorporated with gene expression data from 
microarray experiments. The skin tissue is taken 
as a uniform or homogeneous medium. 
Nevertheless, the skin tissue is inhomogeneous 
with multilayered structure. It consists of two 
primary layers that include a bottom layer – the 
dermis, and a top layer – the epidermis. 
 

In the most of the work identification the 
multimodal datasets which are biomedical data 
from different sources is not considered. 
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Multimodal datasets is used in the context of 
personalized medicine and health data 
management. Their weightage is strengthened 
in the case of multi-factorial diseases, like CM, 
which are promoted by interplay between 
genetic factors and the environment. Linking 
different data can help toward a holistic 
approach of the disease, and for the evaluation 
and comparison of various subsets of markers 
(genetic/ environmental factors, imaging 
features). 
 
In addition the classification accuracy will be 
reduced if most of the irrelevant features in the 
features set are not removed. The selection of 
imaging features which depends on the gene 
signature provides added value to the bias 
power of the selected imaging features. All of 
these problems are solved and motivated from 
the all above work. In addition, Valavanis et al. 
[24] have reported information about gain ratio 
measurements and exploration of the gene 
ontology tree, is used to identify a set of 32 
uncorrelated genes with a essential role as 
regards molecular regulation of melanoma, in 
which the different pathological states are 
correlated heavily with expression across 
samples. These genes do the uncorrelated 
imaging features selection based on their 
ranking which is made according to mutual 
information measurements to the selected gene 
expression values. Genes and imaging features 
which are selected were used to train various 
classifiers that could distinguish malignant 
samples from malignant melanoma samples. In 
this classification task, imaging features were 
outperformed by the genes subset selected here 
contained much denser information on the 
expression of CM compared to the latter. 
 
2. EXPERIMENTATION RESULTS 
 
The  incorporated dataset  which is  formed  
from  two  different  sources (microarrays and  
imaging),  which  are described as follows. The 
methodology which is used to produce the 
dataset by using data imputation methods is 
described. 
 
2.1 Microarrays Data and Preprocessing 
 
Gene expression profiling dataset was found in 
the gene expression omnibus [25-26], 
GDS1375. RNA was cut off from 45 primary 
melanoma, 18 benign skin nevi, and 7 normal 
skin tissue specimens and used for gene 

expression analysis. The Affymetrix Hu133A 
microarray chip was used for expression 
profiling and contained 22 000 probes. The 
mean gene vector relating to the normal skin 
categories was subtracted  from  all  replicate  
vectors  of  the  other  two  categories  followed  
by  global  normalization and  log transformation 
of gene expression values. Differential 
expression ratios were calculated by dividing the 
each category signal intensities by the 
respective normal category’s gene value. An 
FDR for multiple testing adjustments, p-value 
0.001 and two-fold change thresholds were 
applied, and thus, 1701 genes were statistically 
preselected. 
 

2.2 Imaging Data 
 
The imaging dataset consists of skin lesion 
images set, 972 instances of nevus skin lesions 
and 69 melanoma cases. Three types of 
imaging features were calculated as follows: 
border Features, color features and textural 
features which are based on ABCD rule of 
dermatology, C rules, and D rules respectively 
[27]. Finally 31 features were produced (one 
feature was removed due to having zero 
variation across the samples). 
 

2.3 Integrated Dataset 
 
Moutselos et al. [28] have reported that 
microarray and imaging datasets are unified into 
single datasets with the use of missing value 
imputation methods. Before this method, the 
dataset corresponded to a sparse matrix 
containing 1104 samples (benign or malignant 
samples, either from microarray data or imaging 
data) and a total of 1732 features (gene 
expression or imaging features). Missing value 
imputation uses two algorithms: uniform data 
imputation and bootstrap data imputation [25]. 
The uniform imputation is conducted by uniform 
sampling within the range of each feature per 
class, and the bootstrap imputation is performed 
by independent bootstrapping of each variable 
separately per class, until all the missing values 
are replaced. Each algorithm was applied three 
times and a total of six datasets were derived. 
All of the derived datasets has dual scope: 1) 
apply statistics to enlighten the interrelations of 
imaging features and genes and their impact to 
the target variable (malignant versus benign) 
toward the selection of narrowed subsets of 
imaging features or genes, and 2) estimate more 
broadly the selected subsets of features when 
input to classification algorithms. Four classifiers 
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were constructed and evaluated in terms of 
generalization in all six datasets each (three 
uniforms and three bootstrap). Specifically, two 
weighted k-Nearest Neighbor (k-NN) classifiers 
(k = 1, 30), a Decision Tree (DT), and the 
Random Forest (RF) algorithm were used. Their 
performance was measured using three-cross 
validation resampling. Sensitivity (Sen) 
measurements (true positive/(true positive + 
false negative) for each of the two classes in all 
six datasets and in order to compare the 
selected genes subset and imaging features 
subset, mean values were calculated. GOR 
evenge analysis (MF and BP aspects) resulted 
in total of 179 genes found in the original list of 
1701 differentially expressed genes. Out of this 
subset of genes, 32 genes had an IG ratio in the 
top 20% of all 1701 genes. These genes 
comprise a gene signature underlying CM 
manifestation, based on the available gene 
expression profiling data. Correlation 
redundancies (|correlation coefficient| > 0.8) 
were not found in the gene set. Every 
incremental genes subset, starting from the first 
ranked gene based on IG ratio up to all 32 
genes, was calculated most of the variation 
content of the disease status and corresponds to 
measurement of TV > 0.8. Davies et al. [29] 

have shown that their analysis reveals mutations 
in two regions of the BRAF kinase domain. 
Mutations are very similarly distributed in cancer 
cell lines and primary cancers. They [29] have 
demonstrated that the total of 89% of mutations 
are within or immediately adjacent to the 
activation segment, a region of 10–30 amino 
acids bounded by almost invariant DFG and 
APE motifs.  
 
The total variation criterion is used to reduce the 
dimensionality of the set of selected genes set. 
In total four gene or imaging features, subsets 
were derived by the methodologies previously 
described: 1) Thirty-two genes has the gene 
signature (functional analysis and IG ratios), 2) 
ten imaging features selected based solely on 
information content to disease status (IG ratios), 
3) prioritization which depends on list of genes 
has a TV > 0.8 using MI values, is applied to 
select ten imaging features which are selected 
by the GA- based selection scheme. All four 
subset of features were input to the classifiers 
used here. Sensitivity results for the two classes 
(malignant, benign) obtained for all six instances 
of the integrated dataset and  mean values, are 
presented for these four features subsets in 
Tables 1, 2, 3 and 4, respectively. 

 
Table 1. Sensitivity measurements (%) for malignant and benign classes for classifiers using 
32 selected genes (Gorevenge AND IG Ratios): Three cross-validation resampling and mean 

values 
 

Set 1-nn 
benign 
Sen 

1-NN 
malignant 
Sen 

30-NN 
benign 
Sen 

30-NN 
malignant 
Sen 

DT 
benign 
Sen 

DT 
malignant 
Sen 

RF 
benign 
Sen 

RF 
malignant 
Sen 

Bootstrap 1 100 98.13 100 96.12 100 95.12 100 97.12 
Bootstrap 2 100 96.42 100 96.12 100 94.71 100 97.12 
Bootstrap 3 100 99.12 100 96.12 100 93.81 100 99.17 
Uniform 1 100 97.21 100 96.12 100 93.81 100 98.13 
Uniform 2 100 98.36 100 96.12 100 100 100 98.15 
Uniform 3 100 98.36 100 96.12 100 92.38 100 98.36 
Mean value 100 97.93 100 96.12 100 94.971 100 98.008 

 
Table 2. Sensitivity measurements (%) for malignant and benign classes for classifiers using 

ten imaging features selected based solely on IG ratios: three cross-validation resampling and 
mean values 

 
Set 1-NN 

benign 
Sen 

1-NN 
malignant 
Sen 

30-NN 
benign 
Sen 

30-NN 
malignant 
Sen 

DT 
benign 
Sen 

DT 
malignant 
Sen 

RF 
benign 
Sen 

RF 
malignant 
Sen 

Bootstrap 1 92.53 25.16 100 0 93.12 44.32 96.12 30.58 
Bootstrap 2 92.13 26.18 100 0 94.18 44.18 97.81 26.21 
Bootstrap 3 93.13 33.12 100 0 95.24 51.81 96.18 30.18 
Uniform 1 91.62 17.32 99.21 1.63 94.16 42.03 97.63 16.28 
Uniform 2 90.61 22.58 99.15 5.13 95.18 35.18 98.41 11.23 
Uniform 3 91.58 21.08 99.01 7.02 93.14 34.18 97.21 18.36 
Mean value 91.93 24.24 99.56 2.29 94.17 41.95 97.22 22.14 
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Table 3. Sensitivity measurements (%) for malignant and benign classes for classifiers using 
ten imaging features selected based on prioritizing Imaging features to the 26 selected genes 

(gorevenge, IG ratios, TV > 0.8): three cross-validation resampling and mean value 
 

Set 1-NN 
benign 
Sen 

1-NN 
malignant 
Sen 

30-NN 
benign 
Sen 

30-NN 
malignant 
Sen 

DT 
benign 
Sen 

DT 
malignant 
Sen 

RF 
benign 
Sen 

RF 
malignant 
Sen 

Bootstrap 1 93.12 51.45 100 0 93.12 37.18 99.10 14.36 
Bootstrap 2 93.33 64.12 100 0 99.17 44.25 98.16 16.71 
Bootstrap 3 94.06 54.39 100 0 95.24 42.13 97.12 18.18 
Uniform 1 90.13 21.46 99.21 1.63 94.16 36.25 98.32 12.21 
Uniform 2 90.13 21.46 99.09 5.13 95.42 42.13 99.41 7.03 
Uniform 3 91.10 22.15 99.01 7.02 94.18 40.28 98.35 10.36 
Mean value 91.978 39.171 99.551 2.296 95.215 40.37 98.41 13.141 

 
Table 4. Sensitivity measurements (%) for malignant and benign classes for classifiers using 
ten imaging features selected by the GA selection scheme: three cross-validation resembling 

and mean value 
 

Malignant 
Sen 

RF RF DT 30-NN 30-NN 1-NN 1-NN Set 
Benign 
Sen 

Malignant 
Sen 

Benign 
Sen 

Malignant 
Sen 

Benign 
Sen 

Malignant 
Sen 

Benign 
Sen 

Malignant 
Sen 

Bootstrap 1 96.13 49.23 98.12 14.36 94.13 45.18 98.26 22.32 
Bootstrap 2 95.94 36.18 99.04 15.12 93.18 38.13 98.18 20.13 
Bootstrap 3 94.84 43.13 99.12 10.53 94.36 38.18 97.21 15.13 
Uniform 1 95.18 31.40 99.18 4.13 94.15 36.92 99.18 6.18 
Uniform 2 94.36 36.51 99.32 9.42 93.337 32.45 99.31 11.16 
Uniform 3 94.37 35.18 99.01 7.02 93.03 33.14 99.41 12.12 
Mean value 95.136 38.605 98.96 10.096 93.697 37.33 98.591 14.506 

 
Results in Table 1 show that top genes are able 
to yield very good performance metrics. 
Classification accuracy will be high, when 
selected genes are input to the well performed 
1-NN and RF classifier. Sensitivity 
measurements for the malignant class are little 
worse than the corresponding benign class and 
this shows the abundance of benign samples in 
the integrated dataset. When combining results 
in Tables 1, 2, 3 and 4, it is obvious that 
performance metrics obtained here by the top 
genes, are much higher than the ones obtained 
when imaging features are feeding the 
classifiers. Regarding the use of imaging 
features and the classifiers’ performance, the 
much greater abundance of benign samples in 
the integrated dataset provides great effect here. 
Thus, along with the lower information content of 
imaging features, the classifiers perform 
moderately when recognizing malignant 
samples. 
 
3. CONCLUSIONS AND FUTURE WORK 
 
Cutaneous Melanoma diagnosis, skilled 
dermatologists have an accuracy of 64–80% 

using clinical diagnostic criteria, but automated 
melanoma diagnosis systems are still 
experimentally considered and served as 
adjuncts to the naked-eye expert prediction. In 
an attempt recent work of Cutaneous Melanoma 
diagnosis, developed an image processing 
program to differentiate melanoma from gene 
samples, with a mathematical model. In this 
paper the most significant systems for the 
automated detection of malignant melanoma 
and begin melanoma have been surveyed. The 
above said systems use a variety of methods 
which are the image acquisition, the feature 
definition and selection as well as the 
Cutaneous Melanoma classification from 
features. The  most  promising image acquisition 
techniques is feature extraction, since the 
extracted dermoscopy image features which are 
applied for automated lesion characterization 
with predictive value concerning CM. Malignant 
melanoma samples are separated from the 
benign ones by feeding a series of classifiers 
with the selected imaging features subset. The 
classification results obtained using gene 
signature for samples discrimination is 
compared. In order to increase the number of 
cases, more patients must be examined 
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particularly during the classification phase. The 
issue of selecting the most powerful variables for 
classification is very important and may also 
enable even better classification with 
examination of the differences between the two 
methods. The scope of the future work is the 
improvement of accuracy of clinical diagnosis of 
melanoma which is also an issue especially in 
distinguishing between melanoma and mole. 
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