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Abstract
Background. Bone reconstruction with appropriate quality and quantity for dental implant 
replacement in the alveolar ridge is a challenge in dentistry. As dental pulp stem cells (DPSCs) 
could be a new perspective in bone regeneration in the future, this study investigated the bone 
regeneration process by DPSCs.
Methods. Electronic searches for articles in the PubMed, EMBASE, and Scopus databases were 
completed until 21 April 2022. The most important inclusion criteria for selecting in vivo 
studies reporting quantitative data based on new bone volume and new bone area. The quality 
assessment was performed based on Cochrane’s checklist.
Results. After the title, abstract, and full-text screening of 762 studies, 23 studies were included. 
A meta-analysis of 70 studies that reported bone regeneration based on new bone area showed 
a statistically significant favorable influence on bone tissue regeneration compared to the 
control groups (P < 0.00001, standardized mean difference [SMD] = 2.40, 95% CI: 1.55‒3.26; 
I2 = 83%). Also, the meta-analysis of 14 studies that reported new bone regeneration based on 
bone volume showed a statistically significant favorable influence on bone tissue regeneration 
compared to the control groups (P = 0.0003, SMD = 1.85, 95% CI: 0.85‒2.85; I2 = 84%). 
Conclusion. This systematic review indicated that DPSCs in tissue regeneration therapy 
significantly affected bone tissue complex regeneration. However, more and less diverse 
preclinical studies will enable more powerful meta-analyses in the future.
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Introduction
Reconstruction of bone defects is often a clinical 
challenge, especially in dentistry. Maxillofacial bone 
deficiencies result from tooth loss, periodontitis, trauma, 
tumor removal, congenital anomalies, and radiation-
related osteonecrosis. Periodontitis and ridge remodeling 
following tooth loss is the most common cause of the 
alveolar bone defect. Successful implant placement 
requires adequate bone quality and quantity to avoid 
implant failure; therefore, reconstructing the alveolar 
ridge is a substantial issue for dental implant-supported 
prostheses.1-3

Autogenous bone grafting is the gold standard for bone 
regeneration. However, mitigating the complications 
associated with the harvest of autologous bone was the 
primary impetus for developing bone graft substitutes.4 
Reconstructing bone defects with tissue engineering using 
dental pulp stem cells or DPSC is one of the most modern 
rehabilitation methods that can revolutionize future 

treatments.5

DPSCs can include self-renewal capacity, multilineage 
differentiation capacity, high proliferation potential, 
and clonogenic efficacy. These features have made them 
the most promising mesenchymal stem cells (MSCs) for 
clinical purposes. However, many issues and challenges 
must be addressed before using these cells in clinical 
treatment.6,7

Tissue engineering scaffolds can facilitate the 
proliferation and differentiation of progenitor cells. 
Combining osteogenic cells, osteogenic factors, 
biocompatible scaffolds, and angiogenesis are the 
elements of bone tissue engineering. Treatment with 
bone-related factors, gene transfection, and gene 
overexpression enhances the bone regeneration potential 
of DPSCs.5,8

Due to the limited clinical trials conducted in the 
field of bone regeneration by DPSCs, they have not yet 
been effectively used in clinical treatments. Further 
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investigation of the studies conducted in this field will lead 
to achieving suitable study designs and, ultimately, the 
progress of therapy using DPSCs. Since the quantitative 
evaluation of bone regeneration by DPSCs has not been 
carefully evaluated in the previous systematic reviews, this 
study aimed to evaluate the potential of DPSCs in clinical 
and preclinical bone regeneration from a quantitative 
point of view. For this purpose, this review study analyzed 
the amount of bone volume and bone area regenerated 
by DPSCs.

Methods
Protocol
The Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) statement 9 was the protocol of 
this systematic review.

Focus questions 
The objective of this study was to review the literature to 
answer the focused question systematically:

Do DPSCs improve the quantitative results of bone 
regeneration?

Which samples, scaffold type, final follow-up, and 
defect type significantly impact bone regeneration?

Eligibility criteria
The inclusion criteria for the selection were: 

In vivo studies, bone defect regeneration therapy 
utilizing DPSCs, studies reporting quantitative data in the 
form of new bone volume percentage or new bone area 
percentage, and studies published in the English language.

The exclusion criteria for the selection were: 
Studies reporting only qualitative results of bone 

regeneration 
In studies where the results of bone regeneration had 

been reported quantitatively, the exclusion criteria were 
these items: 

Standard deviations were not apparent, the numbers 
of samples were not reported, the created bone defects 
were not filled by scaffolds seeded with DPSCs in the test 
group, and an acellular scaffold did not fill the created 
bone defects in the control group.

Information sources
Electronic searches were completed for articles in 
MEDLINE (PubMed), EMBASE, and Scopus databases 
until 21 April 2022. Also, related systematic references 
were added.

Search strategy 
The search strategy was: “regenerate *” AND “bone*” 
AND (“stem” or “pulp”), AND “cell.”

Selection process
The studies were evaluated by two reviewers separately 
(NM and FO), and the third reviewer (FE) reviewed the 
differences.

Data collection process
Two reviewers (NM and FO) collected data from each 
report independently.

Data items
The list and definition of outcomes are as follows:

“Author-year” specifies the author and year of 
publication.

“Sample” specifies the type of animals with bone defects. 
“Number” specifies the total number of test and control 

group samples.
“Site and size of bone defects” specifies the type of 

the created bone defects and their dimensions or the 
dimensions of the bur used.

“Final follow-up” specifies the final duration of 
treatment by week.

“Laboratory method” specifies the laboratory method.
“Scaffold” specifies the scaffold used.
“Regenerated bone area” specifies the study outcome 

based on bone area percentage. The results of the test and 
control groups for each study are stated in this column. 
In the test group, the defect was filled by scaffolds seeded 
with DPSCs, and in the control group, the defect was 
supplied with an acellular scaffold.

“Regenerated bone volume” specifies the study outcome 
based on bone volume percentage. The results of the 
test and control groups for each study are stated in this 
column. In the test group, the defect was filled by scaffolds 
seeded with DPSCs, and in the control group, the defect 
was supplied by an acellular scaffold.

Study risk of bias assessment
Cochrane’s risk of bias tool was used to assess the risk 
of bias in the included studies.10 The criteria used were 
as follows: random sequence generation (selection 
bias), allocation concealment (selection bias), blinding 
of personnel (performance bias), blinding of outcome 
assessment (detection bias), incomplete outcome data 
(attrition bias), selective reporting (reporting bias), and 
other sources of bias.

The classification of studies based on seven criteria of 
risk of bias assessment was as follows:

A study had a low risk of bias if it had none of the types 
of preferences, a study had a moderate risk of bias if it had 
one of the types of bigotry, and a study had a high risk of 
bias if it has more than one type of bias.

Statistical analysis
Review Manager (RevMan, Computer program, Version 
5.4, The Cochrane Collaboration, 2020) was used for 
statistical analysis. Separate meta-analyses were performed 
according to regenerated bone volume and area. In 
addition, subgroup analyses were performed according to 
the sample, defect, follow-up, and scaffold types. 

Meta-analyses were performed using the Z test with 
random effects weighted inverse variance method. 
The effect size was measured using standardized mean 
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differences (SMDs) and 95% confidence intervals. 
SMD < 0.2 was considered a ‘small’ effect size, SMD 
between 0.2 and 0.8 represented a ‘medium’ effect size, 
and SMD > 0.8 was considered a ‘large’ effect size. The 
results were considered significant when P < 0.05. The 
heterogeneity was assessed using the I2 test. If I2 was > 75%, 
it was interpreted as highly heterogeneous. 

Results
Study selection
A total of 762 records were identified through database 
searches. After removing duplicate articles, in vitro 
articles, review articles, and articles that did not investigate 
bone tissue regeneration, the full texts of 78 studies were 
reviewed. The reasons for excluding studies after a full-
text assessment were as follows: The quantitative data 
were not reported (n = 27)11-37; the percentage of new bone 
volume or new bone area was not reported )n = 9)38-46; 
the number of the samples was not reported (n = 2)47,48; 
stem cells from human exfoliated deciduous teeth were 
used as MSCs (n = 2)49,50; the created bone defects in the 
test group were not filled by scaffolds seeded with DPSCs 
(n = 10)51–59; and the created bone defects in the control 
group were not filled by an acellular staging (n = 5).60-64 

Finally, 23 studies were included in the meta-analysis.65-87 
Figure 1 shows the flow chart.

Study characteristics
The samples used in the studies were rats in 9 
studies,65,67,69,71,74,76,78,79,85 mice in 5 studies,80,81,83,84,87 rabbits 
in 4 studies,72,77,78,82 sheep in 2 studies,68,70 and pigs in 2 
studies.73,86 

The bone defects were created in the cranium in 15 
studies,65,67,68-72,74,79,80,82-84,86 in the mandible in 2 studies,67,73 
in the alveolar bone in 4 studies,68,69,78,86 and in the femur 
in 2 studies.70,80 Dimensions of defect, Scaffolding used, 
and final follow-up varied across studies. 

The results were in the form of a new bone area in 
10 studies65,68,70,71,73,74,76,78,79,84 and new bone volume in 7 
studies.69,75,80,81,83,85,86

Six studies reported outcomes in both forms.66,67,72,77,82,87 

Table 1 shows the study characteristics.

Risk of bias in studies
In this category, 2, 8, and 13 articles showed a low, medium, 
and high risk of bias, respectively. Figures 2 and 3 show 
reviewing authors’ judgments about each risk of bias item 
presented.

Figure 1. Flow diagram for included searches of databases. Abbreviations: MSCs: mesenchymal stem cells; SHEDs: stem cells from human exfoliated deciduous teeth
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Table 1. Classification of in vivo studies based on their features

Author, year Sample Number
Site and size of 
bone defects

Final 
follow-up

Laboratory method Scaffold
Regenerated bone 
area

Regenerated bone 
volume

Vater et al, 
202280 Mice 23

Femur
15.7 mm3 6 Weeks

Histology
µCT

MCM
T = 29.45 ± 19.5%
C = 28.28 ± 12.8%

Colorado et al, 
202265 Rats 10

Calvarium
5 mm

10 Weeks
Histology
Radiology SEM

PLGA/HA
T = 5.14 ± 0.13%
C = 4.98 ± 0.16%

Chan et al, 
2022 77 Rabbits 12

Calvarium
6 mm

8 Weeks

Histology
Histomorphometry
Immunohistochemistry 
µCT

HA-TCP
T = 39.78 ± 2.45%
C = 38.01 ± 2.45%

T = 41.32 ± 3.57%
C = 39.81 ± 3.16%

Maillard et al, 
202281 Mice 10

Calvarium
3.5 × 1 mm2 8 Weeks

Histology
Histomorphometry
µCT

Hydrogel
T = 11.67 ± 2.85%
C = 4.84 ± 2.33%

Zhu et al, 
202187 Mice 18

Calvarium
2 mm

8 Weeks
Histology
Radiology
µCT

Collagen
T = 32.51 ± 2.46%
C = 24.64 ± 2.03%

T = 55.86 ± 3.31%
C = 47.56 ± 2.33%

Shiu et al, 
202182 Rabbits 8

Calvarium
6 mm

8 Weeks
Histology
Histomorphometry
µCT

MBCP (HA 
and tricalcium 
phosphate)

T = 39.8 ± 5.7%
C = 38.3 ± 6.0%

T = 41.0 ± 1.4%
C = 38.4 ± 1.3%

Shiu et al, 
202182 Rabbits 8

Calvarium
6 mm

8 Weeks
Histology
Histomorphometry
µCT

Bio-Oss
T = 42.1 ± 2.7%
C = 41.3 ± 3.5%

T = 41.2 ± 3.4%
C = 39.0 ± 5.1%

Park et al, 
202083 Mice 8

Calvarium
4 mm

8 Weeks
Histology
Immunohistochemistry 
µCT

Dense collagen 
(S53P4)

T = 3.62 ± 1.94%
C = 6.47 ± 4.08%

Jin et al, 201967 Rats 10
Mandible
2 × 1 mm2 6 Weeks

Histology
µCT

Hydrogel
T = 6.15 ± 0.55%
C = 1.30 ± 0.29%

T = 26.03 ± 3.53%
C = 8.95 ± 3.25%

Çolpak et al, 
201968 Sheep 32

Alveolar bone
3.7 × 10 mm2 6 Weeks

Histology
Histomorphometry

Granular 
deproteinized 
bovine bone with 
10% porcine 
collagen

T = 29 ± 1.07%
C = 18.45 ± 0.33%

Lin et al, 
201969 Rats 20

Alveolar bone
2 × 1.5 × 0.5 
mm3

2 Weeks
Histology
µCT

Matrigel
T = 47.61 ± 7.08%
C = 30.08 ± 2.13%

Campos et al, 
201970 Ovine 12

Femur
5 mm

17 Weeks
Histology
Histomorphometry
Radiology

Bonelike® plus 
Tisseel Lyo®

T = 77.5 ± 3.2%
C = 67.9 ± 3.9%

Lee YC et al, 
201966 Rabbits 12

Calvarium
6 mm

6 Weeks

Histology
Histomorphometry
Immunohistochemistry 
µCT

Bio Oss
T = 33.5 ± 9.3%
C = 25.6 ± 9.7%

T = 48.3 ± 3.0%
C = 43.5 ± 0.9%

Yuan et al, 
201871 Rats 20

Calvarium
5 mm

12 Weeks

Histology
Histomorphometry
Immunohistochemistry
µCT

Bio-Oss
T = 34.69 ± 4.68%
C = 24.69 ± 2.44%

Collignon et al, 
2018 84 Mice 12

Calvarium
3.5 mm

12 Weeks
Histology
Histomorphometry
µCT

Collagen
T = 65.01 ± 11.38%
C = 35.25 ± 18.47%

Wongsupa et 
al, 201772 Rabbits 6

Calvarium
11 mm

8 Weeks

Histology
Histomorphometry
µCT
Clinical

PCL/BCP T = 11.36 ± 3.56%
C = 6.68 ± 1.38%

T = 25.33 ± 0.61%
C = 13.28 ± 2.46%

Chamieh et al, 
201685 Rats 15

Calvarium
5 mm

5 Weeks
Histology
Histomorphometry
µCT

Collagen
T = 9.86 ± 1.92%
C = 3.07 ± 0.52%

Kuo et al, 
201573 Pigs 8

Mandible
6 mm

8 Weeks
Histology
Histomorphometry

CSD
T = 69.7 ± 4.9%
C = 33.9 ± 9.9%

Cao et al, 
201586 Pigs 8

Alveolar bone
5 × 7 × 3 mm3 12 Weeks

Histology
Histomorphometry
Radiology
Clinical

HA-TCP
T = 56 ± 3.6%
C = 0.47 ± 2.19%

Petridis et al, 
201574 Rats 30

Calvarium
5 mm

8 Weeks
Histology
Histomorphometry

Hydrogel
T = 32.78 ± 9.24%
C = 24.40 ± 8.29%
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Analysis based on new bone area percentage
Seventeen studies reported results based on bone area 
percentage.65,66,67,69,71,74–82,84–86 Study results were highly 
heterogeneous. Bone formation was significantly 
enhanced in the test groups compared to the control 
groups (P < 0.00001, SMD = 2.40, 95% CI: 1.55‒3.26; 
participants = 289; studies = 17; I2 = 83%) (Figures 4 and 5).

Subgroup analyses showed a statistically significant 
difference in bone regeneration with different scaffold 
and defect types. The granular deproteinized bovine 
bone group enhanced bone regeneration the most 
(SMD = 12.99 [95% CI: 9.52‒16.46]). However, only one 
study formed this subgroup, and thus this result has low 
statistical power (Figure 6). The alveolar bone defect 
subgroup had the biggest and significantly different effect 
size compared to other defect types (Figure 7 ). The SMDs 
in the alveolar and mandibular bone defect subgroup were 
9.73 ([95% CI: 3.65‒15.89], studies = 2) and 6.46 ([95% CI: 
0.69‒12.23], studies = 2), respectively, higher than that in 
the calvarium bone defect subgroup (SMD = 1.39 [95% 
CI: 0.84‒1.95], studies = 12) (Figure 7). 

There were no significant differences in final follow-
up and sample types. The most positive impact on bone 

regeneration occurred in groups where the final follow-
up was six weeks, and the sheep were used as samples 
(Figures 8 and 9). The outcome of sample types subgroup 
analysis without considering the subgroups including 
less than two studies was as follows: The biggest SMD 
occurred in the rat subgroup (SMD = 2.19 [95% CI: 
1.05‒3.33], studies = 6), and the smallest SMD occurred 
in the rabbit subgroup (SMD = 0.97 [95% CI: 0.10‒1.84], 
studies = 5) (Figure 6).

Analysis based on new bone volume percentage
Fourteen studies reported results based on new bone 
volume percentage.66,67,68-70,72-75,77,80,83,87 Study results 
were highly heterogeneous. Bone formation was 
significantly enhanced in the test groups compared 
to the control groups (P < 00001, SMD = 1.85, 95% CI: 
0.85‒2.85; participants = 205; studies = 14; I2 = 84%) 
(Figures 10 and 11). All the studies showed a net positive 
effect of DPSCs therapy on bone treatment outcomes. 
However, two study subgroups77,83 reported a negative 
effect compared to the control groups.

Subgroup analyses showed a significant difference in 
bone regeneration with all the subgroups. However, all 

Author, year Sample Number
Site and size of 
bone defects

Final 
follow-up

Laboratory method Scaffold
Regenerated bone 
area

Regenerated bone 
volume

Annibali et al, 
201475 Mice 10

Calvarium
4 × 1 mm2 8 Weeks

Histology
Histomorphometry

Granular 
deproteinized 
bovine bone with 
10% porcine 
collagen 

T = 17.67 ± 20.17%
C = 16.21 ± 9.74%

Maraldi et al, 
201376 Rats 20

Calvarium
5 × 8 × 1.5 mm3 4 Weeks

Histology
Histomorphometry
Immunohistochemistry
Radiology

Collagen
T = 56.80 ± 4.34%
C = 43.58 ± 7.15%

Pisciotta et al, 
201279 Rats 10

Calvarium
5 × 8 × 1.5 mm3 6 Weeks

Histology
Histomorphometry
Immunohistochemistry

Collagen
T = 69.03 ± 7.87%
C = 39.21 ± 4.36%

Liu et al, 
201178 Rabbits 12

Alveolar bone
10 × 4 × 3 mm3 12 Weeks

Histology
Histomorphometry
Radiology

nHAC/PLA
T = 35.95 ± 2.53%
C = 22.86 ± 0.55%

T: test group; C: control group; µCT: X-ray micro-computed tomography; SEM, Scanning electron microscopy; MCM, Mineralized collagen matrix; HA-TCP, 
Hydroxyapatite /Tricalcium phosphate; HA, hydroxyapatite; PLGA, Polylactide-co-glycolide; CSD, Calcium sulfate dehydrate; PCL/BCP, polycaprolactone/β-
tricalcium phosphate; HA, Hydroxyapatite; TCP, Tricalcium phosphate; nHAC, Nanohydroxyapatite/ collagen; PLA, poly(L-lactide.

Table 1. Continued

Figure 2. Risk of bias graph: reviewing authors’ judgments about each risk of bias item presented as percentages across all included studies
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the subgroups had only one to two studies, indicating low 
statistical power. In addition, subgroup analyses showed 
high heterogeneity (Figures 12, 13, 14, and 15).

Subgroup analyses showed that the most positive 
impact on bone regeneration occurred in groups where 
bone defects were created in the alveolar bone, and the 
pigs were used as samples (Figures 12 and 13). More 
precisely, the outcomes of subgroup analyses without 
considering subgroups including less than two studies 
were as follows: The SMD in the alveolar bone defect 
subgroup (SMD = 8.48 [95% CI: -4.03‒20.96], studies = 2) 
was higher than that in the calvarium bone defect 
subgroup (SMD = 1.58 [95% CI: 0.47‒2.69], studies = 10) 
(Figure 13). In the sample type subgroups, the SMDs 
in the rat, rabbit, and mice subgroups were 4.01 ([95% 
CI: 2.99‒5.03], studies = 3), 1.15 ([95% CI: -0.16‒2.45], 
studies = 5), and 0.94 ([95% CI: -0.36‒2.24], studies = 5), 
respectively (Figure 12).

The most significant positive impact on bone 
regeneration occurred in groups where the final follow-up 
was 12 weeks, and hydroxyapatite/tricalcium phosphate 
(HA-TCP) was used as a scaffold (Figures 14 and 15).

Reporting biases
There was a possibility of bias due to the small number 

of studies. Also, the funnel plots of the new bone area 
and new bone volume indicated an asymmetrical shape. 
The asymmetrical shape might have been caused by 
publication bias, study heterogeneity, and methodological 
anomaly (Figures 5 and 11).

Discussion
Bone tissue engineering by DPSCs has been the subject 
of many studies as a method that could have a promising 
future in alveolar ridge reconstruction. However, despite 
many advances in this field, the high heterogeneity of 
studies and the few studies with complete statistical data 
make high-power statistical analysis impossible and 
the clinical application and effectiveness of stem cell 
utilization unclear.

This meta-analysis evaluated the impact of tissue 
engineering by DPSCs on bone regeneration based on 
the new bone volume and new bone area formation. 
Two previous systematic reviews6,88 mentioned a 
positive impact of tissue engineering by DPSCs on bone 
regeneration based on qualitative data. The present study 
is the first to evaluate the effect of tissue engineering by 
DPSCs on bone regeneration based on quantitative data.

According to this review, DPSCs and scaffold 
complexes significantly increase bone regeneration. 
Clinical diversity and high methodological heterogeneity 
should be considered in the interpretation of the meta-
analysis. Analyses were performed in the subgroups of 
sample type, scaffold type, final follow-up and defect 
types. Although heterogeneity decreased in the majority 
of subgroup analyses, a few studies in subgroups caused 
the low statistical power of meta-analysis. Nonetheless, 

Figure 3. Risk of bias summary: reviewing authors’ judgments about each 
risk of bias item for each included study
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the use of DPSCs and scaffold caused a significant increase 
in the reconstruction of bone defects. 

In addition, it is necessary to pay attention to this 
point that this meta-analysis has not reviewed the 
impact of other factors, such as growth factors, on bone 
regeneration. Bone-related factors, gene transfection, 
and gene overexpression enhance the bone regeneration 
potential of DPSCs.5,8 However, meta-analysis was 
impossible due to the high heterogeneity of methodology 
in the studies examining these factors’ impact on bone 
tissue engineering. Therefore, we can expect a more 
significant amount of bone regeneration by DPSCs with 
the application of growth factors, gene transfection, and 
gene overexpression.

Using growth factors such as tetrahydroxystilbene 
glucoside,69 rhBMP-2,78 and osteogenic culture medium48 
increased bone regeneration. In addition, overexpression 
of SIRT1, Runx2, EphrinB2, and DPSCs derived from PN3 
Wnt1-CRE-RosaTomato mouse molar in separate studies51-53 
showed a significant increase in bone regeneration.

Compared to other stem cells, studies comparing the 

ability of DPSCs to bone marrow MSCs did not show 
a significant difference in bone regeneration.47,50,66,89 
However, evaluation of the osteogenic potential of 
adipose tissue-derived stem cells67 and amniotic fluid stem 
cells76 showed a significant increase in bone regeneration 
compared to DPSCs.

Overall, using DPSCs with appropriate scaffold, growth 
factor, and gene therapy will result in the maximum 
bone regeneration percentage. Finally, as mentioned in 
previous systematic reviews, bone tissue engineering can 
be expected to result in a favorable clinical outcome.6,88

Few clinical studies examined bone reconstruction in 
Mansfield.38-40,43,90,91 Most of these studies have reported 
new bone regeneration based on probing depth and 
clinical attachment loss. Future clinical trials should also 
evaluate the extent of bone regeneration in other ways, 
such as micro-computed tomography.

Future research should concentrate on humans or 
samples closer to humans, such as dogs and sheep, than 
on mice and rats. The results should be in the form of 
statistical data such as bone volume, trabecular number, 
bone mineral density, and mineral content.

The new bone formation could include maxillary 
or mandibular bone defects rather than cranium or 
subcutaneous ones. Future research should compare 
the effect of different growth factors, scaffolds, and gene 
overexpression on bone regeneration.

Conclusion 
Bone tissue engineering by DPSC is one of the promising 
ways for bone regeneration in the future. This study 
was designed in response to the question of whether the 
current clinical studies quantitatively indicate the ability 
of DPSC to regenerate bone properly. In this review 
article, the meta-analysis conducted on the results of 
the studies showed a significant increase in the amount 

Figure 4. Forest plot for new bone area measures

Figure 5. Funnel plot for new bone area measures
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Figure 6. Forest plot for new bone area measures stratified by scaffold type
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Figure 7. Forest plot for new bone area measures stratified by defect type

Figure 8. Forest plot for new bone area measures stratified by animal type
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Figure 10. Forest plot for new bone volume measures 

Figure 9. Forest plot for new bone area measures stratified by final follow-up
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Figure 11. Funnel plot for new bone volume measures

Figure 12. Forest plot for new bone volume measures stratified by animal type
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Figure 13. Forest plot for new bone volume measures stratified by defect type

Figure 14. Forest plot for new bone volume measures stratified by the final follow-up
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Figure 15. Forest plot for new bone volume measures stratified by scaffold type
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of bone regenerated by DPSCs. It also showed a ‘large’ 
effect size by DPSC on bone regeneration. However, 
more studies in the future will provide the possibility of 
meta-analysis with more power. Furthermore, to achieve 
the best method of transplanting DPSCs in bone tissue 
engineering, future studies should compare the effects 
of growth factors, types of biological scaffolds, and other 
factors affecting bone regeneration by DPSCs. Therefore, 
more preclinical and clinical studies should be conducted 
in this field to overcome the clinical challenges of tissue 
engineering by DPSCs.
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