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Abstract

In [1] proved that global existence and uniqueness of a classical solution to the three dimensional
Vlasov-Poisson system in presence of point charges in case of repulsive interaction. Authors in
[2] were the first to establish a growth bound on the size of the velocity support of the phase
space density. This paper improves it further.
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1 Introduction

In this paper we study the time evolution of a positive plasma interacting with a positive point
charge in three dimensional case. Let f(t, x, v) be the one particle distributional function of the
plasma, then the macroscopic density of the plasma is defined by ρ(t, x) =

∫
R3 fdv. Particles in
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the plasma are subjected to two forces: one is the self-induced electrostatic force E(t, x) and the
other is the repulsive force F (t, x) generated by the positive point charge. Then the three dimension
Vlasov-Poisson system with a positive point charge writes:

∂tf + v · ∇xf + (E + F )∇vf = 0,

E(t, x) =

∫
R3

(x− y)

|x− y|3 ρ(t, y)dy,

F (t, x) =
x− ξ(t)

|x− ξ(t)|3 , f(0, x, v) = f0(x, v), (1.1)

ξ̇(t) = η(t), η̇(t) = E(t, ξ(t)),

(ξ(0), η(0)) = (ξ0, η0),

where f0(x, v) > 0 is the initial microscopic density of the plasma, which is assumed to be known.
In which ξ0 ∈ R3 and η0 ∈ R3 are the initial position and velocity of the point charge, respectively.
In absence of the charge, the system (1.1) reduces to the well-known Vlasov-Poisson equation, which
has been widely investigated about existence and uniqueness of classical solutions in the last years.
In two and three dimensional problem was solved in the nineties in [3, 4, 5, 6]: In the framework
of compactly supported solutions a natural way to quantify the number of fast moving particles
consists in looking at the size of the support of the velocity variable

R(t) = sup{|v| : ∃ x ∈ R3, f(t, x, v) ̸= 0}.

Once, asymptotic growth bounds on R(t) are established, see [7, 8, 9, 10] for several different
estimates, so far the best results are as follows :

R(t) ≤ C(1 + t)
2
3 ln

11
21 (2 + t), t ≥ 0,

in the attractive case (γ = −1) [11]. For any given ϵ > 0 there exist a positive constant c, such that

R(t) ≤ Cϵ(1 + t)
2
11

+ϵ, t ≥ 0,

in the repulsive case (γ = +1) [12]. [13, 14, 15, 16] studied and proved global existence and unique
of classical solution to the Vlasov-Poisson system with point charge, the analysis of these papers
relies on an essential tool: the microscopic energy h(t, x, v), which is defined by

h(t, x, v) =
|v − η(t)|2

2
+

1

|x− ξ(t)| +G, (1.2)

where G is a suitable constant. So far, the first upper bound of exponential type for (1.1) was
obtained in [1]

R(t) ≤ C(C +Q0) exp(C(1 + t)), t ≥ 0,

which was improved in [8], namely

R(t) ≤ CQ0(1 + t)
15
2 , t ≥ 0,

where C and Q0 are generic positive constants depending only upon initial data f0. This paper
combines the methods in the papers [1] and [10] to refine a bit that estimate and obtain:

Theorem 1.1. Let f(t, x, v) be a classical solution of the Vlasov Poisson system (1.1) with a non
negative initial datum f0(x, v) ∈ C1

c (R6), (ξ0, η0) ∈ R3 × R3 and assume min{|x − ξ0| | (x, v) ∈
suppf0(x, v)} > 0. Then there exists a constant C > 0 such that

R(t) ≤ CQ0(1 + t)
21
5 , t ≥ 0, (1.3)

where Q0 = sup{
√
h(0, x, v) | (x, v) ∈ suppf0}.

In this paper, the letter C is a generic constant depending only on f0, and ∥.∥p always denote the
norm of the space Lp(R3) for 1 ≤ p ≤ ∞.
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2 Preliminaries and Dynamical Estimates

We use this section to fix the notations, to recall some preliminary result (see [1]and references
quoted therein). In the remainder of this article for any fix T > 0, we say that (f, ξ) is a unique
classical solution of (1.1) on [0, T ], with initial condition (f0, (ξ0, η0)) satisfying the assumptions in
Theorem 1.1 such that f0 ∈ Cc

1(R6), f ∈ Cc
1([0, T ]×R3×R3) and ξ ∈ C2([0, T ]), we note:

i)For any fixed s ∈ R+, denote (X(s; 0), V (s; 0)) = (X(s; 0, x, v), V (s; 0, x, v)) is the solution of
characteristic system:


Ẋ(s; 0) = V (s; 0),

V̇ (s; 0) = E(s,X(s; 0)) + X(s;0)−ξ(s)

|X(s;0)−ξ(s)|3 ,

(X(0; 0), V (0; 0)) = (x, v),

(2.1)

where (x, v) ∈ R3\{ξ0} × R3.

ii)For any fixed s ∈ R+, the map (x, v) 7→ (X(s; 0), V (s; 0)) is a measure preserving C1 bijection
from (R3\{ξ0})×R3 onto (R3\{ξ(s)})×R3, since we know by classical theory of ordinary differential
equations that (X(s; 0), V (s; 0)) ∈ C1(R+) for any fixed (x, v), and

f(t, x, v) = f0(x, v).

Consequently for any p ∈ [1,∞] the Lp norm ∥f(t)∥p is preserved

∥f(t)∥p = ∥f0∥p, for any t ≥ 0.

Furthermore, the energy of the system (1.1) at time t ≥ 0 is defined by

H(t) =
1

2

∫
R6

|v|2f(t, x, v)dxdv +
1

2
|η(t)|2 + 1

2

∫
R6

ρ(t, x)ρ(t, y)

|x− y| dxdy +

∫
R3

ρ(t, x)

|x− ξ(t)|dx

is also preserved namely: H(t) = H(0) for t > 0. Throughout this work we will use the following
lemma established in [1].

Lemma 2.1. There exists a constant K > 0 depending on H(0) and ∥f0∥∞ for which∫
R3

ρR(x
′)

|x− x′|2 dx
′ ≤ KR

4
3 , (2.2)

where ρR(x) =
∫
|v|≤R

f(t, x, v)dv and R > 0. Without loss of generality, we may assume that

K ≥ max{H(0), 1}. Due to the assumptions on the initial datum f0(x, v), one can easily deduce
that H(t) = H(0) ≤ C < ∞. In this paper we chose G = K in (2.1) where K is a large constant
defined in Lemma 2.1. Then we have

|v| ≤ |v − η|+ |η| ≤
√
2h(t, x, v) +

√
2H(0) ≤ 2

√
2h(t, x, v), (2.3)

thus combining the initial condition f0(x, v) with ∥f(t)∥p, we get that for t ≥ 0∫
R6

h(t, x, v)f(t, x, v)dxdv

≤
∫
R6

|v|2f(t, x, v)dxdv + (|η|2 +K)∥f0∥L1(R6) +

∫
R3

ρ(t, x)

|x− ξ(t)|dx

≤ 3H(0) + (2H(0) +K)∥f0∥L1 ≤ C. (2.4)

Now, we define

P (t) = sup{
√
h(s,X(s; 0), V (s; 0)) | s ∈ [0, t], (x, v) ∈ suppf0}.

3
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And for 0 < δ < t define

Q(t, δ) = sup{
√
h(s,X(s; t− δ), V (s; t− δ)) | s ∈ [t− δ, t], (x, v) ∈ suppf(t− δ)}.

Next, differentiating along trajectories (2.1) with (2.3), we find

| d
ds

h(s,X(s; 0), V (s; 0))| = | 1

2
√
h
(V (s; 0)− η(s)) · (E(s,X(s; 0))− E(s, ξ(s)))|,

from which

| d
ds

√
h(s,X(s; 0), V (s; 0))| ≤ |E(s,X(s; 0))|+ |E(s, ξ(s))|. (2.5)

As explained earlier, the method relies on a suitable splitting of [0, t] into small intervals. For

a given t > 0, we split the interval [0, t] as follows (0, t] =
n−1∪
i=1

(ti−1, ti]. More precisely we set

δ(t) = (ti−1 − ti] =
1

8KP (t)
16
21

. Hence, from (2.5) we have that

√
h(t,X(t; t− δ), V (t; t− δ)) ≤

√
h(t− δ, x, v)

+

∫ t

t−δ

(|E(s,X(s; t− δ))|+ |E(s, ξ(s))|)ds, (2.6)

√
h(t,X(t; 0), V (t; 0)) ≤

√
h(0, x, v) +

∫ t

0

(|E(s,X(s; 0))|+ |E(s, ξ(s))|)ds. (2.7)

Now, we need to control the electric fields |E(s,X(s; t − δ))| and |E(s, ξ(s))|. One can control
the quantity |E(s, ξ(s))| by the following proposition: where we will use a variance substitute
ȳ = X∗(s) = X(s; t − δ(t), y, w), w̄ = V ∗(s) = V (s; t − δ(t), y, w) and utilized the property that
f(t, x, v) is a constant along the characteristic flow, in the following propositions.

Proposition 2.2. : Let (f, ξ) be a classical solution of (1.1) on [0, T ]. we have∫ t

t−δ(t)

|E(s, ξ(s))|ds ≤ CP (t)
16
21 δ(t). (2.8)

Proof: ∫ t

t−δ(t)

|E(s, ξ(s))|ds ≤
∫ t

t−δ(t)

∫
R6

f(s, ȳ, w̄)

|ȳ − ξ(s)|2 dȳdw̄ds

≤
∫ t

t−δ(t)

∫
R6

f(t− δ(t), y, w)

|X∗(s)− ξ(s)|2 dydwds,

Setting U(s) = |X∗(s)− ξ(s)| , then

U̇(s) =
X∗(s)− ξ(s)

|X∗(s)− ξ(s)| · (V
∗(s)− η(s)),

Ü(s) =
|V ∗(s)− η(s)|2

|X∗(s)− ξ(s)| +
1

U(s)2
+

X∗(s)− ξ(s)

|X∗(s)− ξ(s)| · (E(X∗(s), s)− E(ξ(s)), s)

− [(X∗(s)− ξ(s)) · (V ∗(s)− η(s))]2

|X∗(s)− ξ(s)|3 .

Using Lemma 2.1 and definition of P (t) (see [15]), we obtain

Ü(s) ≥ 1

U(s)2
− 2KP (t)

4
3 ,

4
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therefore,∫ t

t−δ(t)

1

U(s)2
ds ≤ U̇(t)− U̇(t− δ(t)) + 2KP (t)

4
3 δ(t)

≤ |V ∗(t)− η(t)|+ |V ∗(t− δ(t))− η(t− δ(t))|+ 2KP (t)
4
3 δ(t)

≤ CP (t) +
1

4
P (t)

13
20 ≤ CP (t).

Now choose

P = P (t)
4
7 ,

with using the last inequality, we have∫ t

t−δ(t)

|E(s, ξ(s))|ds ≤
∫ t

t−δ(t)

∫
R6

f(t− δ(t), y, w)

|X∗(s)− ξ(s)|2 dydwds

≤
∫ t

t−δ(t)

∫
{
√

h(s,X∗(s),V ∗(s))≤P}

f(t− δ(t), y, w)

|X∗(s)− ξ(s)|2 dydwds

+

∫ t

t−δ(t)

∫
{
√

h(s,X∗(s),V ∗(s))≥P}

f(t− δ(t), y, w)

|X∗(s)− ξ(s)|2 dydwds

≤
∫ t

t−δ(t)

∫
{
√

h(s,X∗(s),V ∗(s))≤P}

f(t− δ(t), y, w)

|X∗(s)− ξ(s)|2 dydwds

+

∫
{
√

h(s,X∗(s),V ∗(s))≥P}

f(t− δ(t), y, w)

∫ t

t−δ(t)

ds

|X∗(s)− ξ(s)|2 dydw

≤ CP
4
3 δ(t) + CP (t)P−2 ≤ CP (t)

16
21 δ(t) + CP (t)−

1
7

≤ CP (t)
16
21 δ(t) + CP (t)

13
21 δ(t) ≤ Cδ(t)P (t)

16
21 .

where we have used measure preserving of characteristic flow and (2.4) in the above inequality to
get that ∫

R6

f(t− δ(t), y, w)dydw =

∫
R6

h(s,X∗(s), V ∗(s))

h(s,X∗(s), V ∗(s))
f(t− δ(t), y, w)dydw

≤ P−2

∫
R6

h(s, ȳ, w̄)f(t− δ(t), y, w)dydw

≤ CP−2. (2.9)

2

Proposition 2.3. : For any t > 0, δ(t) = 1

8KP (t)
16
21

< t and Q(t, δ) ≥ (128K)2, we have

∫ t

t−δ(t)

|E(s,X(s; t− δ(t))|ds ≤ Cδ(t)P (t)
16
21 . (2.10)

5
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Proof : Firstly we choose L = P
−2
3 and r(s, v)) = |v − V ∗(s)|−1|v|2, and define

S1 = {(s, y, w) ∈ (t− δ(t), t)× suppf(t− δ(t)) |
√
h(s,X∗(s), V ∗(s)) ≤ P},

S2 = {(s, y, w) ∈ (t− δ(t), t)× suppf(t− δ(t)) |
√
h(s,X∗(s), V ∗(s)) ≥ P,

|X(s; t− δ(t))−X∗(s)| ≤ r(s, v)},
S3 = {(s, y, w) ∈ (t− δ(t), t)× suppf(t− δ(t)) |

√
h(s,X∗(s), V ∗(s)) ≥ P,

|X(s; t− δ(t))−X∗(s)| ≥ r(s, v), |X∗(s)− ξ(s)| > L, |X(s; t− δ(t))− ξ(s)| > 2L},
S4 = {(s, y, w) ∈ (t− δ(t), t)× suppf(t− δ(t)) |

√
h(s,X∗(s), V ∗(s)) ≥ P,

|X(s; t− δ(t))−X∗(s)| ≥ r(s, v), |X∗(s)− ξ(s)| < L, |X(s; t− δ(t))− ξ(s)| > 2L},
S5 = {(s, y, w) ∈ (t− δ(t), t)× suppf(t− δ(t)) |

√
h(s,X∗(s), V ∗(s)) ≥ P,

|X(s; t− δ(t))−X∗(s)| ≥ r(s, v), |X∗(s)− ξ(s)| > L, |X(s; t− δ(t))− ξ(s)| < 2L}.

We denote

I =:

∫ t

t−δ(t)

|E(s,X(s; t− δ(t)))|ds ≤
∫ t

t−δ(t)

∫
R6

f(s, ȳ, w̄)

|X(s; t− δ(t))− ȳ|2 dȳdw̄ds

≤
∫ t

t−δ(t)

∫
R6

f(t− δ(t), y, w)

|X(s; t− δ(t))−X∗(s)|2 dydwds

Let Ii denote the contribution of the set Si to the above integral. The integral I1 is easily estimated,
by using Lemma 2.1

I1 ≤
∫ t

t−δ(t)

∫
R3×{|w̄|<4P}

f(s, ȳ, w̄)

|X(s; t− δ(t))− ȳ|2 dȳdw̄ds

≤ Kδ(t)(4P )
4
3 ≤ Cδ(t)P (t)

16
21 . (2.11)

To estimate I2 pick (x, v) such that |v| = P (t), if δ ≤ (t, P (t)
2

) then |v| ≤ C|V ∗| and P (s) ≤ CP (t),
therefore for any s ∈ (t− δ, t) we can estimate I2 by integrating in the space variable first

I2 ≤
∫
S1

f(t− δ(t), y, w)

|X(s; t− δ(t))−X∗(s)|2 dydwds ≤
∫ t

t−δ

∫
1

|v|2|v − V ∗(s)|dvds

≤ C

∫ t

t−δ

(1 + ln
P (s)

|V ∗(s)| )ds ≤ Cδ(t) ≤ Cδ(t)P (t)
16
21 . (2.12)

To estimate I3 we define

△(t, p) = sup{δ ∈ (0, t)|∀(x, v) ∈ suppf0

∫ t

t−δ(t)

|E(s,X(s, 0, x, v))|ds ≤ 4p}

and we assume |V (t; t−δ(t))−V ∗(t)| ≥ 4p. The main estimate in the process is given in the lemma
below

Lemma 2.4. : Let (x, v) ∈ suppf(t− δ) and δ ∈ (0, t) verifying

δ ≤ △(t,
1

5
|V (t; t− δ)− V ∗(t)|). (2.13)

Suppose there exists λ > 0 such that

r(s, V (s; t− δ(t)) ≥ λr(t, V (t; t− δ(t))). (2.14)

For all s ∈ [t− δ, t], then∫ t

t−δ(t)

|X(s; t− δ(t))−X∗(s)|−21s3(s,X(s), V (s))ds

≤ C

|V (t; t− δ)− V ∗(t)|r(t, V (t; t− δ(t)))
. (2.15)

6
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Proof : Let Z(s) = X(s; t− δ(t))−X∗(s), we note

Ż(s) = V (s; t− δ(t))− V ∗(s)

Z̈(s) = E(s,X(s; t− δ(t)))− E(s,X∗(s))

+
X(s; t− δ(t))− ξ(s)

|X(s; t− δ(t))− ξ(s)|3 − X∗(s)− ξ(s)

|X∗(s)− ξ(s)|3 ,

for any s, suppose s0 minimizes |Z(s)|2, it comes |Z(s)| ≥ |Z(s0) + (s − s0)Ż(s0)| − |
∫ s

s0
(s −

u)|Z̈(u)|du|. Besides, if s = s0 minimizes |Z(s)|2 when s ∈ [t− δ(t), t] then (s− s0)Z(s0)Ż(s0) ≥ 0,
therefore

|Z(s)| ≥ |(s− s0)Ż(s0)| − |
∫ s

s0

(s− u)|Z̈(u)|du| ≥ |(s− s0)|(|Ż(s0)| − |
∫ s

s0

|Z̈(u)|du|)

≥ |(s− s0)|(|Ż(s0)| −
2

5
|Ż(t)|).

Since δ ≤ △(t, 1
5
|Ż(t)|), we have |Ż(s0)− Ż(t)| ≤ 2

5
|Ż(t)|. Hence

|X(s; t− δ(t))−X∗(s)| = |Z(s)| ≥ 1

5
|s− s0||Ż(t)| = 1

5
|s− s0|V (t; t− δ(t))− V ∗(t)|.

|Z(s)| ≥ r(s, V (s; t− δ)) ≥ λr(t, V (t; t− δ(t)))

For any s ∈ (t− δ(t), t) and (s, y, w) ∈ S3. Setting ϕ(u) = min(u−2, r−2), we have∫ t

t−δ(t)

1s3(s,X(s), V (s))

|X(s; t− δ(t))−X∗(s)|2 ds ≤
∫ ∞

−∞
ϕ(

1

5
|s− s0|V (t; t− δ(t))− V ∗(t)|)ds

≤ C

|V (t; t− δ)− V ∗(t)|r(t, V (t; t− δ(t))
.

This is the desired inequality . 2

If (s,X(s), V (s)) /∈ S3, for any s ∈ [t− δ(t), t] the above estimate is verified. Other wise, there exist
s∗ ∈ [t−δ(t), t] such that (s∗,X(s∗), V (s∗)) ∈ S3 and min(|V (s∗; t−δ(t))|, |V (s∗; t−δ(t))−V ∗(s∗)|) ≥
4p. But then

δ ≤ △(t, P ) ≤ △(t,
|V (s∗; t− δ(t))− V ∗(s∗)|

4
) ≤ △(t,

1

2
|V (t; t− δ(t))− V ∗(t)|)

and assumption (2.13) holds true. Similarly we find δ ≤ △(t, 1
3
|V ((t; t − δ(t))|) so that δ(t) ≤

min(△(t, 1
3
|V (t; t − δ(t))|),△(t, 1

2
|V (t; t − δ(t)) − V ∗(t)|)). This gives in true |V (s, t − δ(t))| ≤

3
4
|V (t; t− δ(t))| and |V (s, t− δ(t))− V ∗(s)| ≤ 2|V (t; t− δ(t))− V ∗(t)|. In view of the definition of

r(s, v) the assumption (2.14) is satisfied. Thus we may use the lemma and (2.4), integrating yields

I3 ≤
∫ ∫

f(t− δ(t), y, w)

∫ t

t−δ(t)

|X(s; t− δ(t))−X∗(s)|−2

1s3 (s,X(s; t− δ(t)), V (s; t− δ(t)))ds ≤ C ≤ Cδ(t)P
16
21 (t). (2.16)

On the other hand, if |V (t; t− δ(t))− V ∗(t)| ≤ 4p by (2.1) we obtain that

V̇ (s; t− δ(t))− V̇ ∗(s) = E(s,X(s; t− δ(t)))− E(s,X∗(s))

+
X(s; t− δ(t))− ξ(s)

|X(s; t− δ(t))− ξ(s)|3 − X∗(s)− ξ(s)

|X∗(s)− ξ(s)|3 ,

7
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and

d

ds
|V (s; t− δ(t))− V ∗(s)| =

(V (s; t− δ(t))− V ∗(s)) · (V̇ (s; t− δ(t))− V̇ ∗(s))

|V (s; t− δ(t))− V ∗(s)| ,

by lemma 2.1 and definition of L, we infer

d
ds
|V (s; t− δ(t))− V ∗(s)| ≤ 2(kP

4
3 (t) + L−2) ≤ 2(1 + k)P

4
3 (t), therefore

|V (s; t− δ(t))− V ∗(s)| ≤ |V (t; t− δ(t))− V ∗(t)|+ |
∫ t

s

d

ds
|V (τ ; t− δ(t))− V ∗(τ)|dτ |

≤ 4P (t)
4
7 + 2(1 +K)P (t)

4
3 δ(t) ≤ 9

2
P (t)

4
7 ,

we obtain

I3 ≤ Cδ(t)(
9

2
P

4
7 (t))

4
3 ≤ Cδ(t)P

16
21 (t). (2.17)

The contribution of S4, in the first, basically our aim is to show that the time spent by trajectory in
the protection sphere B(ξ(t), L) is very small, for proving this we apple the virial theorem argument
introducing :l(s) = 1

2
|X∗(s)− ξ(s)|2, differentiating we get

l̇(s) = (X∗(s)− ξ(s)) · (V ∗(s)− η(s)),

l̈(s) = |V ∗(s)− η(s)|2 + 1

|X∗(s)− ξ(s)| + (X∗(s)− ξ(s)) · (E(s,X∗(s))− E(s, ξ(s))).

Lemma 2.5. : For (x, v) ∈ suppf(t− δ), then the set N = {s ∈ (t− δ(t), t) | |X∗(s)− ξ(s)| < L},
is connected. Moreover,

meas(N) ≤ 2P
−52
21 (t). (2.18)

Proof: Let s0 ∈ N̄ be administer for l(s) by Lemma 2.1 and l̇(s) we have for s ∈ [s0, t)

|l̈(s)| ≥ h(s,X∗(s), V ∗(s))−K − |X∗(s)− ξ(s)||E(s,X∗(s))− E(s, ξ(s))|

≥ P 2 −K − 2KLP (t)
4
3 ≥ P (t)

8
7 − 1

16
P (t)

1
2 − 1

8
P (t)

7
6 ≥ 1

2
P (t)

8
7 . (2.19)

Consider now (s1, s2) ⊂ N is the maximal connected component containing s0. If s0 ∈ [s1, s2), l̇(s) ≥
0 ( if s0 = s2 we use the same argument via the time reversal ), then

l̇(s) ≥ l̇(s0) +

∫ s

s0

l̈(τ)dτ ≥ 1

2
P

8
7 (t)(s− s0) ≥ 0, ∀s ∈ [s0, t).

Since l is increasing from s0 up to t, the trajectories can not reenter in the protection sphere once
escaped. Therefore N = (s1, s2) is connected. Next, integrating twice (2.19) in time and using
l̇(s) ≥ 0, we get

1

2
L2 ≥ l(s) = l(s0) +

∫ s

s0

l̇(τ)dτ ≥ 1

4
P (t)

8
7 (s− s0)

2, s ∈ [s0, s2).

− 1
2
L2 ≤ −l(s) ≤ l(s0)− l(s) ≤ − 1

4
P (t)

4
7 (s0 − s)2, ∀s ∈ (s1, s0].

Similar estimate can be obtained when s0 = s1 or s0 = s2 so that l(s) is a monotonic function and
N = (s1, s2) is connected, and (2.18) is proved . 2
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Next, to estimate the integral I4, since

|X(s; t− δ(t))−X∗(s)| ≥ |X(s; t− δ(t))− ξ(s)| − |X∗(s)− ξ(s)| ≥ L.

Hence by Lemma 2.5 and (2.9), we have

I4 ≤ L−2

∫ t

t−δ(t)

I{|X∗(s)−ξ(s)|<L}(s)ds

∫
R6

f(t− δ(t), y, w)dydw

≤ Cδ(t)P (t)−
88
21 . (2.20)

The contribution of S5, let s0 ∈ [t− δ, t] such that

√
h(s,X(s; t− δ(t)), V (s; t− δ(t)))

≥
√
h(s0, X(s0; t− δ(t)), V (s0; t− δ(t)))

−
∫ t

t−δ(t)

(|E(s,X(s; t− δ(t)))|+ |E(s, ξ(s))|)ds

≥ Q(t, δ(t))− 2KQ(t, δ(t))
4
3 δ(t) = Q(t, δ(t))− 2KQ(t, δ(t))

4
3

8KP (t)
16
21

≥ Q(t, δ(t))− Q(t, δ(t))
4
3

4Q(t, δ(t))
16
21

= Q(t, δ(t))− 1

4
Q(t, δ(t))

4
3 ≥ 1

2
Q(t, δ(t)).

By similar way to the estimate of I4, we suppose l1(s) =
1
2
|X(s; t− δ(t))− ξ(s)|2, then

|l̈1(s)| ≥ |V (s; t− δ(t))− η(s)|2 + 1

|X(s; t− δ(t))− ξ(s)|
− |X(s; t− δ(t))− ξ(s)||E(s,X(s; t− δ(t)))− E(s, ξ(s))|
≥ h(s,X(s; t− δ(t)), V (s; t− δ(t)))−K −

|X(s; t− δ(t))− ξ(s)||E(s,X(s; t− δ(t)))− E(s, ξ(s))|

≥ 1

4
Q(t, δ(t))2 −K − 4KL(2

√
2Q(t, δ(t)))

4
3

≥ 1

4
Q(t, δ(t))2 − 1

16
Q(t, δ(t))

1
2 − 16Q(t, δ(t))

4
3Q(t, δ(t))

1
2

128P (t)
2
3

≥ 1

4
Q(t, δ(t))2 − 1

16
Q(t, δ(t))

1
2 − 1

8
Q(t, δ(t))

7
6 ≥ 1

16
Q(t, δ(t))2.

Finally, we infer that

J5 ≤ KQ(t, δ(t))
4
3

∫ t

t−δ(t)

I{|X(s;t−δ(t))−ξ(s)|<2L}(s)ds

≤ CQ(t, δ(t))
4
3LQ(t, δ(t))−1

≤ CQ(t, δ(t))
4
3

P (t)
2
3Q(t, δ(t))

≤ C

Q(t, δ(t))
1
3

≤ Cδ(t)
P (t)

16
21

Q(t, δ(t))
1
3

≤ Cδ(t)P (t)
16
21 , (2.21)

since Q(t, δ(t)) ≥ 1. Finally, gathering (2.11), (2.12), (2.16), (2.17), (2.20), (2.21) and the definition
of P (t) imply the expected lower bound (2.10) . 2
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3 Proof of Theorem 1.1

Theorem 1.1 now follows from Propositions 2.2 and 2.3 with (2.5), since if [ti − ti−1] ≤ δ(t), then
1
2
nδ(t) ≤ t ≤ nδ(t) . On the other hand, we have

∫ t

0

(|E(s,X(s; 0))|+ |E(s, ξ(s))|)ds ≤
n−1∑
i=0

∫ ti+δ(t)

ti

(|E(s,X(s; ti))|+ |E(s, ξ(s))|)ds

≤
n−1∑
i=0

CP (t)
16
21 δ(t)

≤ CP (t)
16
21 nδ(t) ≤ 2CP (t)

16
21 t, forδ(t) < t (3.1)

for any i = 1, ..., n, Q(ti, δ(t)) ≥ (128K)2 and δ(t) < t. Using (2.7) with definition of P (t), Q0 and

(3.1), we obtain P (t) ≤ Q0 + CP (t)
16
21 t, then we can argue exactly as in the case without point to

show that

P (t) ≤ 2CQ0(1 + t)
21
5 t > 0,

since for all i = 1, ..., n, Q(ti, δ(t)) ≤ (128K)2, by the definition of P (t) and Q(t, δ(t)), we have that

P (t) ≤ max
i=1,...,n

Q(ti, δ(t)) ≤ (128K)2 ≤ C ≤ C(1 + t)
21
5 . (3.2)

Finally, let (X,V )(t) = (X,V )(ti−1, t, x, v) be a trajectory such that

√
h(t̄, X(t̄), V (t̄)) = P (t̄) for some t̄ ∈ [ti−1, ti].

If we choose t̄ = 1
16k

, such that t̄ ≤ δ(t̄), we get P (t̄) ≤ 2
16
21 which implies P (t̄) ≤ 2CQ0(1 + t̄)

21
5 .

Now to extended the result for any t̄ ≤ t < δ(t) by definition of δ(t) and t̄, we get P (t) ≤ 2
16
21 . As

a result of the monotonic increasing of P (t), we have that

P (t) ≤ CQ0 + C(1 + t)
21
5 ≤ 2CQ0(1 + t)

21
5 for 0 < t < δ(t).

The prove of Theorem 1.1 is complete. 2

4 Conclusion

Global existence and uniqueness of a classical solution to the three dimensional Vlasov-Poisson
system in presence of point charges in case of repulsive interaction is the topic of current interest
for many researchers as it has several diversified applications. We show here the size of the velocity

support of the distribution function grows at most like t
21
5 , t ≥ 0.
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