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Abstract

Inversion codes allow the reconstruction of a model atmosphere from observations. With the inclusion of optically
thick lines that form in the solar chromosphere, such modeling is computationally very expensive because a non-
LTE evaluation of the radiation field is required. In this study, we combine the results provided by these traditional
methods with machine and deep learning techniques to obtain similar-quality results in an easy-to-use, much faster
way. We have applied these new methods to Mg II h and k lines observed by the Interface Region Imaging
Spectrograph (IRIS). As a result, we are able to reconstruct the thermodynamic state (temperature, line-of-sight
velocity, nonthermal velocities, electron density, etc.) in the chromosphere and upper photosphere of an area
equivalent to an active region in a few CPU minutes, speeding up the process by a factor of 105−106. The open-
source code accompanying this Letter will allow the community to use IRIS observations to open a new window to
a host of solar phenomena.
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1. Introduction

To answer some of the major open questions about the solar
atmosphere, it is critical to understand the physical conditions
in the chromosphere. The chromosphere has been observed for
decades from ground- and space-based telescopes. Particularly
the Interface Region Imaging Spectrograph explorer (IRIS, De
Pontieu et al. 2014) has observed more than ≈19,000 data sets
at subarcsecond resolution in the Mg II h and k spectral range,
in the near-ultraviolet, since it was launched in 2013.

The formation of the Mg II h and k lines has been studied
using numerical calculations that include the effect of partial
redistribution of scattered photons and 3D radiative transfer
effects (Leenaarts et al. 2013a, 2013b; del Pino Alemán et al.
2016; Sukhorukov & Leenaarts 2017). Some spectral features
such as the intensity and wavelength of the emission peaks and
central reversal of those lines can potentially serve as proxies of
the temperature, line-of-sight velocity (vlos), and their gradients
in various regions of the chromosphere (Leenaarts et al. 2013b;
Pereira et al. 2015). However, so far these proxies have only
been studied for quiet-Sun-like conditions, and do not provide
detailed height-dependent diagnostics.

One of the most successful methods to recover physical
information from spectropolarimetric observations is through
nonlinear fitting techniques, where the parameters of a model
atmosphere are iteratively adjusted in order to match the
emerging model intensities with the observed spectra. This
procedure is commonly called an “inversion” even though it is
not based on a formal inversion to the radiative transfer
equation.

de la Cruz Rodríguez et al. (2016, 2019) have developed the
STockholm Inversion Code (STiC), which assumes nonlocal
thermodynamical equilibrium, plane-parallel geometry and

includes partial frequency redistribution. This inversion code
(IC) recovers a depth-stratified model covering the photo-
sphere, chromosphere, and transition region from the inversion
of spectropolarimetric observations. We have used STiC to
invert the Mg II h and k intensity data observed with IRIS.
However, on average, the time needed to recover such
information is about 2 -CPU hour profile. Thus, to invert
an IRIS map such as the one shown in Figure 1—which
contains ≈220,000 spectra—takes ≈440,000 CPU–hours.
To reduce this computationally prohibitive task and allow for

the inversion of large fields of view and time series of data, we
have created a framework based on the inversion results of
Mg II h and k profiles and several machine and deep learning
techniques. This new approach allows us to reconstruct models
(with similar accuracy as STiC) from any IRIS data set in a few
minutes using a desktop machine. Accompanying this Letter,
this code is publicly available.
In Section 2 we describe the foundations of the new

framework. In Sections 3 and 4 we present how the novel
inversion methods work. The first results and their validation
are shown in Section 5. Finally, we discuss the advantage and
limitations of the framework in Section 6.

2. IRIS Mg II h and k Database

We have created a database of Mg II h and k profiles
observed with IRIS using the Representative Profiles (RP) of
250 data sets of different solar features, such as quiet Sun,
plage, sunspots, emerging flux regions, active regions, flares,
coronal holes, and filaments. The RPs are obtained after
applying a clustering technique (k-mean analysis, Stein-
haus 1957; MacQueen 1967) to the spectral profiles of Mg II
h and k from the selected data sets.
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Each data set in the database is clustered in 60 RPs, which
we have inverted with STiC using the same inversion scheme
for all RPs. The number of RPs was determined by hardware
constraints. The inversion setup consists of two cycles. The first
cycle considers four nodes7 in temperature, and three nodes
both in microturbulence (vturb) and line-of-sight velocity (vlos).
The second cycle takes as input the output model from the first
cycle, now using seven nodes in temperature, and four nodes
both in vturb and vlos. Each RP is inverted three times from a
different set of initial parameters (randomization) in each cycle.

For each (observed) RP we obtain a synthetic RP
(RP@STIC), which is the best match found by the IC between
the observed and synthetic profiles, and the corresponding
Representative Model Atmosphere (RMA). An RMA consists
of the depth-stratifications of temperature (T in K ), vlos in
cm s−1, vturb in cm s−1, gas pressure (pgas in dyn cm−2), mass–

density (ρ in g cm−3), electron density (ne in cm−3), column
mass (cmass in g cm−2), and height (z in cm).

2.1. Physical Meaning of the RPs and RMAs

An RP is the averaged profile of a cluster of profiles sharing
the same shape as a function of wavelength. From a machine-
learning perspective, the intensity at any wavelength is a
feature. Thus, a profile in the IRIS Mg II h and k database is a
sample with 473 features, the number of wavelength points in
the profiles. The k-mean clustering technique clusters these
features independently. In our case, the features determine the
shape of the profile.
The shape of a spectral profile encodes information of the

atmosphere from which the radiation originates.8 Locations
with similar physical conditions shall share profiles with similar

Figure 1. Top-left panel: slit-reconstructed intensity map of NOAA AR 12480 observed by IRIS at Mg II k2V. Top-middle panel: location of the representative profiles
(RPs). Top-right panel: location on the solar disk of the IRIS Mg II h and k database observations and their (color-encoded) exposure time. Bottom panels: from left to
right, T, vlos, and electron density (log(ne)) evaluated at log(τ)=−4.

7 The number of nodes is the number of grid points (or degrees of freedom) in
which an atmospheric parameter is allowed to vary.

8 In this Letter we do not consider polarimetric data or magnetic field, as IRIS
observes only intensity. However, the methods presented are also valid for
spectropolarimetric data.
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shape; a region in the atmosphere with similar conditions is
associated with an RP—or a few RPs.

The left panel of the top row of Figure 1 shows the IRIS
intensity map at the blue peak of Mg II k line (k2V spectral
feature) for NOAA AR 12480. In the central panel, the spatial
distribution of the corresponding Mg II h and k RPs is shown.
There, we can appreciate how the RPs are distributed in
coherent patches in the spatio-temporal (since the raster scan
takes time) domain. The second row of Figure 1 shows T, vlos,
and log(ne) recovered from the inversion of the RPs, i.e., in the
RMAs of that data set.

We call this method inversion of RPs by STiC or
RPs STiC@ . Because we are inverting a reduced number of
profiles (the RPs), this method can provide valuable informa-
tion of the physical conditions in the IRIS field of view (FoV)
within a few CPU hours.

The RPs@STiC is a good method to recover information on
spatially coherently averaged areas, although there is a loss of
spatial information. Moreover, a few poorly fitted RPs may
affect a large region. Thus, in the vlos shown in Figure 1, the
patches associated with the border between plage and quiet Sun
show suspicious values. A close inspection of the quality of the
fit of those RPs confirms that their match is not good. To avoid
these flaws we have developed two more sophisticated
methods.

2.2. Building the Database

We have considered most of the main solar features observed
in the photosphere and chromosphere. In addition, the
employed data sets were selected considering position on the
solar disk, exposure time, and IRIS observing modes: dense
(0 33 steps) or sparse (1″) raster, and sit-and-stare. The
location of all data sets included in the database is indicated in
Figure 1.

The database consists of three elements: 15,000 observed
RPs, the corresponding 15,000 synthetic RPs (from the
inversion of the RPs), and the corresponding 15,000 model
atmospheres. Because we have a large number of RPs, both the
synthetic RPs and RMAs represent the variety of typical solar
conditions quite well.

Our database is constructed from observations that are
sensitive to the upper photosphere and chromosphere. There-
fore, the IRISMg II h and k database may also be useful beyond
the direct purpose of this Letter. For instance, theoretical
models and numerical simulations may find valuable observa-
tional constraints in our database.

3. Inversion of IRIS Mg II h and k Lines Based on
Inverted RPs

For any pixel of a given observation, e.g., the one shown in
Figure 1, we look for the closest synthetic profile obtained by
the StiC inversion of the RP in the IRIS Mg II h and k database
(Ii

syn RP STiC@ ). To determine the closest profile we use the same
loss function as in STiC,
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with i=0, K, q the sampled wavelengths, wi their weights, σi
the uncertainties of the observation (e.g., photon noise), and ν

the number of observables, i.e., the spectral samples. A low
value of χ2 tells us whether the fit between the observed (Iobs)

and synthetic profiles Ii
syn RP STiC@ is good. We explicitly

denote the dependency of the synthetic RP on the parameters of
the model atmosphere (M). Once the code has found the best
match between the observed profile and a synthetic RP in the
IRIS database, it associates the corresponding RMA of that
(closest) synthetic RP to the pixel in our observation. For large
data sets, this look-up table process may take a few minutes on
a desktop machine. Then, the code provides a χ2-map (to
indicate the goodness of the match between the observed and
synthetic profiles in the database), the output model atmos-
phere, and the associated uncertainty of each variable of the
model.9

The uncertainty of a physical quantity p is calculated
following Equation (42) in del Toro Iniesta & Ruiz Cobo
(2016):

å

å
s

l l

l
=

+

-
s

s

=

=

[ ( ) ( ) ) ]

( )

( )

M

nm r

I I

R

2 ;
,

2

p
i

q
i

obs
i

syn RP STiC w

i

q
p i

w

2 1
@ 2

1
2

i

i

i

i

2

2

2

2

with m the number of physical quantities in the model M
evaluated in n grid points along the solar atmosphere, r the
number of physical quantities considered constant along that
atmosphere, and Rp the Response Function (RF) of a Stokes
parameter to the physical quantity p (Mein 1971; Landi
Degl’Innocenti 1979; Ruiz Cobo & del Toro Iniesta 1992). The
RF provides the sensitivity of a wavelength sample in a Stokes
profile to (changes of) a physical quantity. Thus, we use
expressions like: “the core of the Mg II h and k lines is sensitive
to the T in optical depths around log(τ)10=−5, while the
wings are sensitive to T in −5<log(τ)<−1.”
We note that the inversion code does not operate over every

grid point of the atmosphere, but over the nodes (each of them
usually affects several grid points simultaneously). Therefore,
in the latter case the RF is usually larger as a larger section of
the atmosphere is perturbed per node and the uncertainty
becomes lower than the estimates obtained by perturbing each
grid point.
We have named this new tool the IRIS Inversion based on

Representative Profiles Inverted by STiC or just IRIS
squared (IRIS2).
IRIS2 relies on two fundamental concepts: (i) the relationship

between the synthetic RPs and the RMAs, given by the
inversion of the observed RPs by STiC, and (ii) because the
IRIS database covers a large variety of solar features, the RPs
and corresponding RMAs are a meaningful representation of
the variety found in the chromosphere and upper photosphere.

4. Inversion of IRIS Mg II h and k Lines Using Deep
Learning

Since the IRIS Mg II h and k database includes synthetic
profiles of the RPs and the corresponding RMAs, we have
trained several deep neural networks (DNN) to reproduce this
relationship. In deep learning jargon, a synthetic RP is the input
layer, i.e., the intensities of the synthetic RP at the sampled

9 Currently, only uncertainties for T, vlos, vturb, and ne are in the IRIS2

database.
10 We use log(τ) to refer to log10(τ5000).
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wavelengths are the input nodes (473). The corresponding
RMA is the output layer, i.e., the values of physical quantities
along the atmosphere (39) are the output nodes. Once the DNN
is trained, we are, in principle, able to predict the physical
quantity through the atmosphere for a given IRIS Mg II h and k
profile.

We have considered T, vlos, vturb, and ne as independent
variables with respect to the corresponding synthetic RP. That
means, we have trained a DNN for each of these physical
quantities. The DNNs have different topologies (number of
hidden layers and nodes), loss functions, and dropout
parameters (to avoid overfitting). All the DNNs we have built
use a rectified linear unit as activation functions, and we use

80% of the IRISMg II h and k database as a training set, and the
remaining as a test set. Similarly, we have trained the
uncertainties (along the atmosphere) of these physical
quantities.
We have named this method deep IRIS squared or

deepIRIS2. More detailed information about the used DNNs
will be given in a follow-up paper.

5. Validation and Discussion

To validate RPs@STiC, IRIS2, and deepIRIS2, we have
inverted, with STiC, every other pixel of the IRIS Mg II h and k
observation of NOAA AR 12480 on 2016 January 14. We

Figure 2. Top panels: (first row) T for NOAA AR 12480 at log(τ)=−4 provided by STiC (left), IRIS2 (center), and deepIRIS2 (right). Middle panels: uncertainties
for these methods. Bottom-left panel: χ2-map associated to STiC results. Bottom-middle and bottom-right panels: uncertainty multiplication factor (UMFT) for IRIS

2

and deepIRIS2 methods. Regions of interest (RoIs) are marked with squares in the center panel of the top row. The animation runs from log(τ)=−6 to −0.8.

(An animation of this figure is available.)
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consider the STiC results as the ground truth, but we should
note that the STiC results also depend on initialization and are
not guaranteed to provide a global minimum of the loss
function.

Some results of using the RPs@STiC method are shown in
the bottom of Figure 1. The first row of Figure 2 shows T at log
(τ)=−4 as a result of the inversion using STiC (left), IRIS2

(center), and deepIRIS2 (right). Figure 3 shows vlos (top), vturb
(middle), and log(ne) (bottom). Animations showing the
variation of these parameters as a function of depth in the
atmosphere are available in the electronic version.

5.1. Discussion: The Reliable Uncertainty Range

One question we should answer to validate our results is, for
a physical quantity at a given optical depth p(τ), how large is
the unsigned difference between the value recovered by our
method and the one obtained by STiC compared to the
uncertainty estimated using Equation (2)? We define the
uncertainty multiplication factor (UMF) as:

t
t t
s t

=
-( ) ∣ ( ) ( )∣

( )
( )p p

UMF . 3p
p

method STiC

STiC

We have selected five regions of interest (RoIs) of
21″×21″ in the FoV: plage (PL), quiet Sun (QS), umbra

Figure 3. Some thermodynamic quantities recovered by STiC (left), IRIS2(center), and deepIRIS2 (right) at log(τ)=−4: vlos (top), vturb (middle), and log(ne)
(bottom). The animation runs from log(τ)=−6 to −0.8.

(An animation of this figure is available.)
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(UM), superpenumbra (SP), and a mix of regions (Mix, see
Figure 2) to help us interpret the results. The full FoV is also
evaluated.

The uncertainty maps (σ-maps) of T obtained by STiC,
IRIS2, and deepIRIS2 are shown in the second row of Figure 2.

The first panel of the third row shows the χ2 map for STiC. The
other panels in the third row show the UMF for T using the
IRIS2 (center) and deepIRIS2 (right) methods. We have
intentionally selected the optical depth log(τ)=−4 because
it illustrates several key issues.

Figure 4. For the full FoV (FFOV, blue line) and the RoIs framed in Figure 2. Top: T along the optical depth in the atmosphere (log(τ)) for STiC (dashed line),
RPs@STiC (left), IRIS2 (center), and deepIRIS2 (right). Middle: ratio between the uncertainty of the new methods with respect to the uncertainty of STiC. Bottom:
uncertainty multiplication factor (UMFT) for the new methods (see Equation (3)).

Figure 5. Uncertainty multiplication factor (UMFp, see Equation (3)) for vlos (top), vturb (center), and ne (right) for the new methods for the full FoV (FFOV, blue line)
and the RoIs framed in Figure 2.
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Some regions in the σ-maps are better (lower values) for
IRIS2 and deepIRIS2 than for STiC.11 This is a direct
consequence of the better fit obtained by IRIS2 compared to
STiC, as mentioned above. The χ2 map shown in the bottom
left panel of Figure 2 is normalized in such a way that the fit is
bad in regions where χ2?1, indicating that p(τ) is likely
suffering from large uncertainties or may be wrong; the fits are
better/good in regions with χ2 of order 1 or less. In the
UMFp-maps (bottom center and right panels of Figure 2)
regions with UMFp≈1 have values of p(τ) as “accurate” as
STiC, or even better if UMFp=1. Our example at log
(τ)=−4 indicates that care should be taken when interpreting
the results in plage and the SP.

Figure 4 shows the behavior of Tmethod and TSTiC (in thick
and dashed line, respectively, in the first row), the ratio
between the uncertainties (s sT T

method STiC, second row), and the
UMFp (third row) for the proposed methods. The numbers next
to the RoIs labels in the legend are the spatially averaged
normalized cSTiC

2 and the ratio c cSTiCmethod
2 2 .

The uncertainties ratios show that mostly all the methods
show the same uncertainty as STiC. In some regions the other
methods give better results, in other cases, the opposite is true,
but on average (blue line) the behavior is very similar, or
clearly better.

The UMFp for RPs@STiC and IRIS2 is 1 in all RoIs for
−3.5<log(τ)<−1. For plage, the UMF for −4.5<log
(τ)<−3 is 1, and c cmethod

2
STiC
2 ; therefore, the values

provided by these methods are more accurate than the ones
from STiC. The situation is the opposite for the SP. All in all,
the values provided by RPs@STiC and IRIS2 are mostly valid
where Mg II h and k lines are sensitive to T, i.e., −5<log
(τ)<−1. For deepIRIS2, we have to be cautious, even when
the uncertainties ratio is 1 in all the RoIs, the difference in T
is noticeable in some of the ROIs.

Figure 5 shows the UMFp for vlos, vturb, and log(ne). All the
methods have a similar behavior in all the RoIs for vlos and
vturb, but there are differences for log(ne) in plage regions for
the IRIS2 and deepIRIS2 methods. We note that while
substantial differences of physical parameters between different
methods can occur, these differences may often be smaller than
the intrinsic uncertainty.

In summary, any of the proposed methods provides these
values as well as STiC—or even better—within the intrinsic
uncertainties. However, when we interpret a physical quantity
and its uncertainty provided by our methods we should be
specially cautious in (i) regions showing large values in the
χ2-map, i.e., where the fit between the observed profiles and
the synthetic profiles is not good, and (ii) those optical depths
where Mg II h and k lines are less sensitive to variations of a
physical parameter. Under those conditions, the uncertainty
will be larger, e.g., two or three times larger than the
uncertainties provided in the database (as the UMF values in
Figures 2 and 3 suggest).

6. Conclusions

We have created and evaluated three novel methods to
rapidly obtain the atmospheric physical quantities in the
chromosphere and upper photosphere from the profiles of the
IRIS Mg II h and k lines. The methods presented are valid for

any spectro(polarimetric) data as far as they can be inverted by
a traditional inversion code. We note that IRIS2 can be used for
any IRIS observation that includes Mg II h or Mg II k (or both)
lines.
We summarize the main advantages and disadvantages for

the three methods:

1. RPs@STiC: on average, it is the closest to STiC.
However, we lose spatial information. This can be
minimized by using a much larger number of RPs for
each data set. It stills requires a proper inversion, which
takes hundreds of CPU hours (e.g., 320 CPU hours for
160 RPs).

2. IRIS2: it offers results as good as STiC on average, being
slightly better or worse than the latter in some solar
features. The spatial information is almost as good as the
original, although some regions may show little variation
if the profiles are associated with the same RP in the
database. That can be minimized by including a larger
variety of profiles in the database. This method is 105–106

times faster than STiC.
3. deepIRIS2: it predicts values of vvlos, vturb, and ne, as good

as the ones obtained by STiC. The predicted values for T
are not as good but acceptable. A more complex DNN
architecture and larger training and test data sets can
improve this. The results do not lose spatial information
and they look spatially smooth. It is ≈106 times faster
than STiC.

As a result of our investigation, we conclude that IRIS2 is
currently the fastest, easy-to-use method to recover reliable
information from the chromosphere and photosphere from IRIS
Mg II h and k data. While we are improving these methods with
a new database that includes 160 RPs per data set, as well as
more observations, we note that the current versions of the IRIS
Mg II h and k lines database, IRIS2 (both in IDL and Python)
and deepIRIS2 are available to the community athttp://iris.
lmsal.com/analysis.html. We expect that our database can be
applied to a wide variety of investigations that use IRIS data.

This work is supported by NASA under contract
NNG09FA40C (IRIS) and the Lockheed Martin Independent
Research Program. JdlCR is supported by grants from the
Swedish Research Council (2015-03994), the Swedish
National Space Board (128/15) and the Swedish Civil
Contingencies Agency (MSB). This project has received
funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (SUNMAG, grant agreement 759548). This Letter
has benefited from discussions at a meeting of team 399
studying magnetic-field-regulated heating in the solar chromo-
sphere at the International Space Science Institute (ISSI) in
Switzerland. IRIS is a NASA small explorer mission developed
and operated by LMSAL with mission operations executed at
NASA Ames Research center and major contributions to
downlink communications funded by ESA and the Norwegian
Space Centre.
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